Straight Lines and Pair of Straight Lines

Question1

The portion of the line 4x + 5y = 20 in the first quadrant is trisected by the lines L_1 and L_2 passing through the origin. The tangent of an angle between the lines L_1 and L_2 is :

[27-Jan-2024 Shift 1]

Options:

A.
8/5
B.
25/41
C.
2/5
D.

30/41

Answer: D

Solution:

Co-ordinates of A = $\left(\frac{5}{3}, \frac{8}{3}\right)$ Co-ordinates of B = $\left(\frac{10}{3}, \frac{4}{3}\right)$ Slope of OA = m₁ = $\frac{8}{5}$ Slope of OB = m₂ = $\frac{2}{5}$ $\begin{pmatrix} y \\ (0, 4) \\ A \\ B \\ (5, 0) \end{pmatrix}$ $\tan \theta = \left|\frac{m_1 - m_2}{1 + m_1 m_2}\right|$ $\tan \theta = \frac{\frac{6}{5}}{1 + \frac{16}{25}} = \frac{30}{41}$ $\tan \theta = \frac{30}{41}$

Let R be the interior region between the lines 3x - y + 1 = 0 and x + 2y - 5 = 0 containing the origin. The set of all values of a, for which the points (a², a + 1) lie in R, is :

[27-Jan-2024 Shift 2]

Options:

```
A.

(-3, -1) \cup \left(-\frac{1}{3}, 1\right)

B.

(-3, 0) \cup \left(\frac{1}{3}, 1\right)

C.

(-3, 0) \cup \left(\frac{2}{3}, 1\right)

D.
```

$$(-3,-1) \cup \left(\begin{array}{c} \frac{1}{3},1 \end{array} \right)$$

Answer: B

Solution:

 $P(a^2, a+1)$ $L_1 = 3x - y + 1 = 0$

Origin and P lies same side w.r.t. L₁

 $2L_1: 3x - y + 1 = 0$ $\Rightarrow 3a^2 - a > 0$ $a \in (-\infty, 0) \cup \left(\frac{1}{3}, \infty\right) \dots \dots (1)$ Let $L_2: x + 2y - 5 = 0$ Origin and P lies same side w.r.t. L_2 $\Rightarrow L_2(0) \cdot L_2(P) > 0$ $\Rightarrow a^2 + 2(a + 1) - 5 < 0$ $\Rightarrow a^2 + 2a - 3 < 0$ $\Rightarrow (a + 3)(a - 1) < 0$ $\therefore a \in (-3, 1) \dots \dots (2)$ Intersection of (1) and (2) $a \in (-3, 0) \cup \left(\frac{1}{3}, 1\right)$

Question3

Let A and B be two finite sets with m and n elements respectively. The total number of subsets of the set A is 56 more than the total number of subsets of B. Then the distance of the point P(m,n) from the point Q(-2, -3) is

[27-Jan-2024 Shift 2]

Options:

A.
10
B.
6
C.
4
D.
8

Answer: A

Solution:

 $2^{m}-2^{n} = 56$ $2^{n}(2^{m-n}-1) = 2^{3} \times 7$ $2^{n} = 2^{3}$ and $2^{m-n}-1 = 7$ $\Rightarrow n = 3$ and $2^{m-n} = 8$ $\Rightarrow n = 3$ and m - n = 3 $\Rightarrow n = 3$ and m = 6P(6, 3) and Q(-2, -3) PQ = $\sqrt{8^{2}+6^{2}} = \sqrt{100} = 10$ Hence option (1) is correct

Question4

If the sum of squares of all real values of α , for which the lines 2x - y + 3 = 0, 6x + 3y + 1 = 0 and $\alpha x + 2y - 2 = 0$ do not form a triangle is p, then the greatest integer less than or equal to p is

[27-Jan-2024 Shift 2]

Answer: 32

Solution:

2x - y + 3 = 0

6x + 3y + 1 = 0

 $\alpha x + 2y - 2 = 0$

Will not form a Δ if $\alpha x + 2y - 2 = 0$ is concurrent with 2x - y + 3 = 0 and 6x + 3y + 1 = 0 or parallel to either of them so

Case-1: Concurrent lines

$$\begin{vmatrix} 2 & -1 & 3 \\ 6 & 3 & 1 \\ \alpha & 2 & -2 \end{vmatrix} = 0 \Rightarrow \alpha = \frac{4}{5}$$

Case-2 : Parallel lines

$$-\frac{\alpha}{2} = \frac{-6}{3} \text{ or } -\frac{\alpha}{2} = 2$$
$$\Rightarrow \alpha = 4 \text{ or } \alpha = -4$$
$$P = 16 + 16 + \frac{16}{25}$$
$$[P] = \left[32 + \frac{16}{25}\right] = 32$$

Question5

In a $\triangle ABC$, suppose y = x is the equation of the bisector of the angle B and the equation of the side AC is 2x - y = 2. If 2AB = BC and the point A and B are respectively (4,6) and (α , β), then $\alpha + 2\beta$ is equal to

[29-Jan-2024 Shift 1]

Options:

A.

42

B.

39

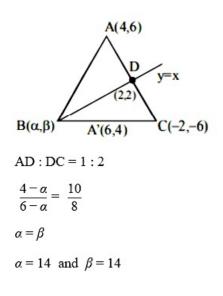
C.

48

D.

45

Answer: A



Question6

Let (5, a/4), be the circumcenter of a triangle with vertices A(a, -2), B(a, 6) and C (a/4, -2). Let α denote the circumradius, β denote the area and γ denote the perimeter of the triangle. Then $\alpha + \beta + \gamma$ is

[29-Jan-2024 Shift 1]

Options:

A.

60

В.

53

C.

62

02

D.

30

Answer: B

$$A(a, -2), B(a, 6), C\left(\frac{a}{4}, -2\right), O\left(5, \frac{a}{4}\right)$$
$$AO = BO$$
$$(a-5)^{2} + \left(\frac{a}{4} + 2\right)^{2} = (a-5)^{2} + \left(\frac{a}{4} - 6\right)^{2}$$
$$a = 8$$
$$AB = 8, AC = 6, BC = 10$$
$$a = 5, \beta = 24, \gamma = 24$$

The distance of the point (2, 3) from the line 2x - 3y + 28 = 0, measured parallel to the line $\sqrt{3x} - y + 1 = 0$, is equal to

[29-Jan-2024 Shift 2]

Options:

A. 4√2

.

Β.

6√3

C.

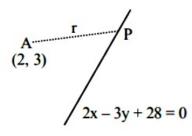
 $3 + 4\sqrt{2}$

D.

 $4 + 6\sqrt{3}$

Answer: D

Solution:



Writing P in terms of parametric co-ordinates 2+r

 $\cos \theta$, 3 + rsin θ as $\tan \theta = \sqrt{3}$

$$P\left(2+\frac{r}{2},3+\frac{\sqrt{3}r}{2}\right)$$

P must satisfy 2x - 3y + 28 = 0

So,
$$2\left(2+\frac{r}{2}\right) - 3\left(3+\frac{\sqrt{3}r}{2}\right) + 28 = 0$$

We find $r = 4 + 6\sqrt{3}$

Question8

Let A be the point of intersection of the lines 3x + 2y = 14, 5x - y = 6

and B be the point of intersection of the lines 4x + 3y = 8, 6x + y = 5. The distance of the point P(5, -2) from the line AB is

[29-Jan-2024 Shift 2]

Options:

A.

13/2

B.

8

C.

5/2

D.

6

Answer: D

Solution:

Solving lines $L_1 (3x + 2y = 14)$ and $L_2(5x - y = 6)$ to get A(2, 4) and solving lines $L_3(4x + 3y = 8)$ and $L_4(6x + y = 5)$ to get B (1/2, 2).

Finding Eqn. of AB: 4x - 3y + 4 = 0

Calculate distance PM

 $\Rightarrow \left| \frac{4(5) - 3(-2) + 4}{5} \right| = 6$

Question9

A line passing through the point A(9, 0) makes an angle of 30° with the positive direction of x-axis. If this line is rotated about A through an angle of 15° in the clockwise direction, then its equation in the new position is

[30-Jan-2024 Shift 1]

Options:

A.

$$\frac{y}{\sqrt{3}-2} + x = 9$$

B.

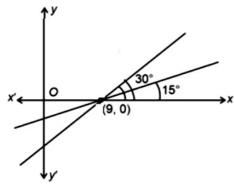
$$\frac{x}{\sqrt{3}-2} + y = 9$$

$$\frac{x}{\sqrt{3}+2}+y=9$$

$$\frac{y}{\sqrt{3}+2} + x = 9$$

Answer: A

Solution:



 $Eq^{n}: y - 0 = \tan 15^{\circ}(x - 9) \Rightarrow y = (2 - \sqrt{3})(x - 9)$

Question10

If $x^2 - y^2 + 2hxy + 2gx + 2fy + c = 0$ is the locus of a point, which moves such that it is always equidistant from the lines x + 2y + 7 = 0 and 2x - y + 8 = 0, then the value of g + c + h - f equals

[30-Jan-2024 Shift 2]

Options:

A.

- 14
- B.
- 6
- C.
- C
- 8
- D.
- 29

Answer: A

Solution:

Cocus of point $P(\boldsymbol{x},\boldsymbol{y})$ whose distance from

Gives

x + 2y + 7 = 0 & 2x - y + 8 = 0 are equal is

 $\frac{x+2y+7}{\sqrt{5}} = \pm \frac{2x-y+8}{\sqrt{5}}$ (x+2y+7)²-(2x-y+8)² = 0 Combined equation of lines (x-3y+1)(3x+y+15) = 0 3x²-3y²-8xy+18x-44y+15 = 0 x²-y²-\frac{8}{3}xy+6x-\frac{44}{3}y+5 = 0 x²-y²+2hxy+2gx2+2fy+c = 0 h = \frac{4}{3}, g = 3, f = -\frac{22}{3}, c = 5 g+c+h-f = 3+5-\frac{4}{3}+\frac{22}{3}=8+6=14

Question11

Let α , β , γ , $\delta \in Z$ and let A(α , β), B(1, 0), C(γ , δ) and D(1, 2) be the vertices of a parallelogram ABCD. If AB = $\sqrt{10}$ and the points A and C lie on the line 3y = 2x + 1, then $2(\alpha + \beta + \gamma + \delta)$ is equal to

[31-Jan-2024 Shift 1]

Options:

A.

10

B.

5

_

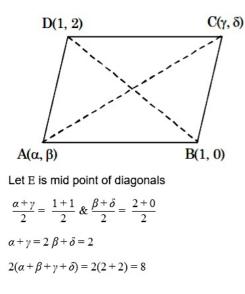
C.

12

D.

8

Answer: D



Question12

Let A(a, b), B(3, 4) and (-6, -8) respectively denote the centroid, circumcentre and orthocentre of a triangle. Then, the distance of the point P(2a + 3, 7b + 5) from the line 2x + 3y - 4 = 0 measured parallel to the line x - 2y - 1 = 0 is

[31-Jan-2024 Shift 2]

Options:

A.

 $\frac{15\sqrt{5}}{7}$

В.

 $\frac{17\sqrt{5}}{6}$

C.

 $\frac{17\sqrt{5}}{7}$

D.

 $\frac{\sqrt{5}}{17}$

Answer: C

A(a, b), B(3, 4), C(-6, -8) 2:1 C A B (-6, -8) (a, b) (3, 4) $\Rightarrow a = 0, b = 0 \Rightarrow P(3, 5)$ Distance from P measured along x - 2y - 1 = 0 $\Rightarrow x = 3 + r \cos \theta, y = 5 + rsin \theta$ Where $\tan \theta = \frac{1}{2}$ $r(2 \cos \theta + 3sin \theta) = -17$ $\Rightarrow r = \left| \frac{-17\sqrt{5}}{7} \right| = \frac{17\sqrt{5}}{7}$

Question13

Let A(-2, -1), B(1, 0), C(α , β) and D(γ , δ) be the vertices of a parallelogram ABCD. If the point C lies on 2x - y = 5 and the point D lies on 3x - 2y = 6, then the value of $|\alpha + \beta + \gamma + \delta|$ is equal to____

[31-Jan-2024 Shift 2]

Answer: 32

$$D(\gamma,\delta)$$

$$3x - 2y = 6$$

$$B(1,0)$$

$$2x - y = 5$$

$$P = \left(\frac{\alpha - 2}{2}, \frac{\beta - 1}{2}\right) = \left(\frac{\gamma + 1}{2}, \frac{\delta}{2}\right)$$

$$\frac{\alpha - 2}{2} = \frac{\gamma + 1}{2} \text{ and } \frac{\beta - 1}{2} = \frac{\delta}{2}$$

$$\Rightarrow \alpha - \gamma = 3 \dots (1), \beta - \delta = 1 \dots (2)$$
Also, (γ, δ) lies on $3x - 2y = 6$

$$3\gamma - 2\delta = 6 \dots (3)$$
and (α, β) lies on $2x - y = 5$

$$\Rightarrow 2\alpha - \beta = 5 \dots (4)$$
Solving $(1), (2), (3), (4)$

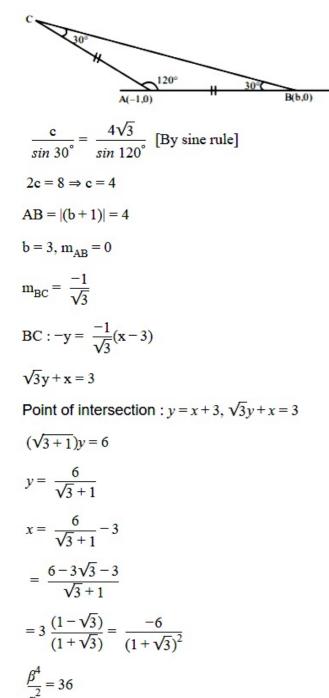
$$\alpha = -3, \beta = -11, \gamma = -6, \delta = -12$$

$$|\alpha + \beta + \gamma + \delta| = 32$$

Let ABC be an isosceles triangle in which A is at (-1, 0), $\angle A = 2\pi/3$, AB = AC and B is on the positive x-axis. If BC = $4\sqrt{3}$ and the line BC intersects the line y = x + 3 at (α , β), then β^4/α^2 is:

[1-Feb-2024 Shift 2]

Answer: 36



Let PQR be a triangle. The points A, B and C are on the sides QR, RP and PQ respectively such that $\frac{QA}{AR} = \frac{RB}{BP} = \frac{PC}{CQ} = \frac{1}{2}$. Then $\frac{Area (\triangle PQR)}{Area (\triangle ABC)}$ is equal to

[24-Jan-2023 Shift 1]

Options:

A. 4

B. 3

C. 2

D. –

Answer: B

Solution:

Let P is
$$\vec{0}$$
, Q is \vec{q} and R is \vec{r}
A is $\frac{2\vec{q} + \vec{r}}{3}$, B is $\frac{2\vec{r}}{3}$ and C is $\frac{\vec{q}}{3}$
Area of \triangle PQR is $= \frac{1}{2} |\vec{q} \times \vec{r}|$
Area of \triangle ABC is $\frac{1}{2} |\vec{AB} \times \vec{AC}|$
 $\vec{AB} = \vec{r} - 2\frac{\vec{q}}{3}$, $\vec{AC} = -\vec{r} - \frac{\vec{q}}{3}$
Area of \triangle ABC $= \frac{1}{6} |\vec{q} \times \vec{r}|$
 $\frac{\text{Area } (\triangle PQR)}{\text{Area}(\triangle ABC)} = 3$

The equations of the sides AB and AC of a triangle ABC are $(\lambda + 1)x + \lambda y = 4$ and $\lambda x + (1 - \lambda)y + \lambda = 0$ respectively. Its vertex A is on the y-axis and its orthocentre is (1, 2). The length of the tangent from the point C to the part of the parabola $y^2 = 6x$ in the first quadrant is [24-Jan-2023 Shift 2]

Options:

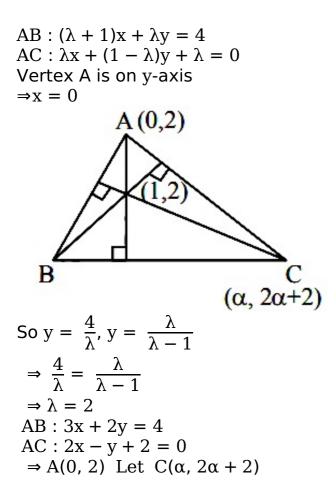
A. $\sqrt{6}$

B. $2\sqrt{2}$

C. 2

D. 4

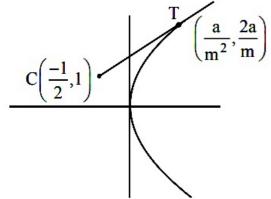
Answer: B



Now (Slope of Altitude through C) $\left(-\frac{3}{2}\right) = -1$

$$\left(\frac{2\alpha}{\alpha-1}\right)\left(-\frac{3}{2}\right) = -1 \Rightarrow \alpha = -\frac{1}{2}$$

So C $\left(-\frac{1}{2}, 1\right)$



Let Equation of tangent be $y = mx + \frac{3}{2m}$ $m^{2} + 2m - 3 = 0$ $\Rightarrow m = 1, -3$ So tangent which touches in first quadrant at T is $T \equiv \left(\frac{a}{m^{2}}, \frac{2a}{m}\right)$ $\equiv \left(\frac{3}{2}, 3\right)$ $\Rightarrow CT = \sqrt{4 + 4} = 2\sqrt{2}$

Question17

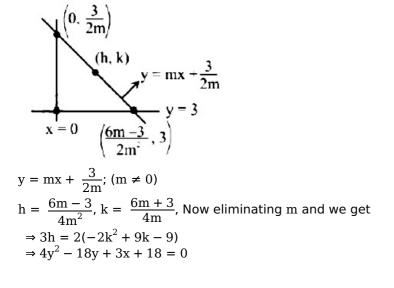
The equations of two sides of a variable triangle are x = 0 and y = 3, and its third side is a tangent to the parabola $y^2 = 6x$. The locus of its circumcentre is: [25-Jan-2023 Shift 2]

Options:

A. $4y^2 - 18y - 3x - 18 = 0$ B. $4y^2 + 18y + 3x + 18 = 0$ C. $4y^2 - 18y + 3x + 18 = 0$ D. $4y^2 - 18y - 3x + 18 = 0$ Answer: C

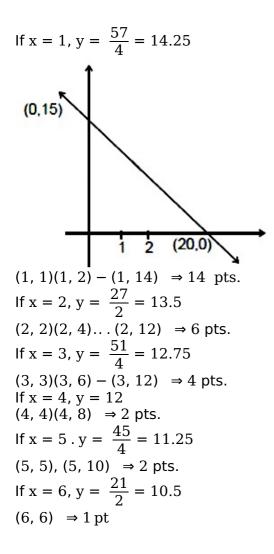
Solution:

Solution: $y^2 = 6x \& y^2 = 4ax$ $\Rightarrow 4a = 6 \Rightarrow a = \frac{3}{2}$



A triangle is formed by X - axis, Y - axis and the line 3x + 4y = 60. Then the number of points P(a, b)which lie strictly inside the triangle, where a is an integer and b is a multiple of a, is _____. [25-Jan-2023 Shift 2]

Answer: 31



If x = 7, $y = \frac{39}{4} = 9.75$ (7, 7) $\Rightarrow 1 \text{ pt.}$ If x = 8, y = 9(8, 8) $\Rightarrow 1 \text{ pt.}$ If $x = 9y = \frac{33}{4} = 8.25 \Rightarrow \text{ no pt.}$ Total = 31 pts.

Question19

A light ray emits from the origin making an angle 30° with the positive x-axis. After getting reflected by the line x + y = 1, if this ray intersects x-axis at Q, then the abscissa of Q is [29-Jan-2023 Shift 1]

Options:

A. $\frac{2}{(\sqrt{3} - 1)}$ B. $\frac{2}{3 + \sqrt{3}}$

C.
$$\frac{2}{3-\sqrt{3}}$$

D. $\frac{\sqrt{3}}{2(\sqrt{3}+1)}$

Answer: B

Solution:

Solution: Slope of reflected ray = $\tan 60^\circ = \sqrt{3}$ Line $y = \frac{x}{\sqrt{3}}$ intersect y + x = 1 at $\left(\frac{\sqrt{3}}{\sqrt{3} + 1}, \frac{1}{\sqrt{3} + 1}\right)$ Equation of reflected ray is $y - \frac{1}{\sqrt{3} + 1} = \sqrt{3} \left(x - \frac{\sqrt{3}}{\sqrt{3} + 1}\right)$ Put $y = 0 \Rightarrow x = \frac{2}{3 + \sqrt{3}}$

Question20

Let B and C be the two points on the line y + x = 0 such that B and C are symmetric with respect to the origin. Suppose A is a point on y - 2x = 2 such that $\triangle ABC$ is an equilateral triangle. Then, the area of the $\triangle ABC$ is [29-Jan-2023 Shift 1]

Options:

A. 3√3

B. 2√3

Answer: C

Solution:

Solution: (-t,t) B y-2x = 2 At A x = y Y - 2x = 2 (-2, -2) Height from line x + y = 0 h = $\frac{4}{\sqrt{2}}$ Area of $\Delta = \frac{\sqrt{3}}{4} \frac{h^2}{\sin^2 60} = \frac{8}{\sqrt{3}}$

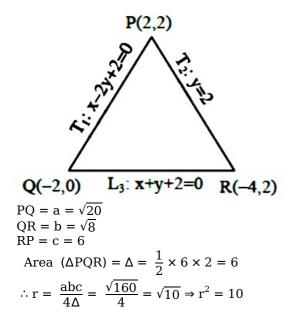
Question21

A triangle is formed by the tangents at the point (2, 2) on the curves $y^2 = 2x$ and $x^2 + y^2 = 4x$, and the line x + y + 2 = 0. If r is the radius of its circumcircle, then r^2 is equal to _____. [29-Jan-2023 Shift 2]

Answer: 10

Solution:

 $\begin{array}{l} S_{1}:y^{2}=2x \ S_{2}:x^{2}+y^{2}=4x\\ P(2,\,2) \text{ is common point on } S_{1}\&S_{2}\\ T_{1} \text{ is tangent to } S_{1} \text{ at } P \ \Rightarrow T_{1}:y\cdot 2=x+2\\ \Rightarrow T_{1}:x-2y+2=0\\ T_{2} \text{ is tangent to } S_{2} \text{ at } P \Rightarrow T_{2}:x\cdot 2+y\cdot 2=2(x+2)\\ \Rightarrow T_{2}:y=2\\ L_{3}:x+y+2=0 \text{ is third line} \end{array}$



A straight line cuts off the intercepts OA = a and OB = b on the positive directions of x-axis and y- axis respectively. If the perpendicular from origin O to this line makes an angle of $\frac{\pi}{6}$ with positive direction of y-axis and the area of $\triangle OAB$ is $\frac{98}{3}\sqrt{3}$, then $a^2 - b^2$ is equal to: [30-Jan-2023 Shift 1]

Options:

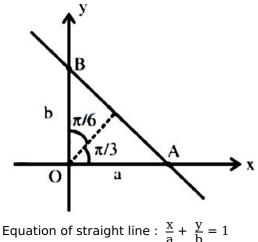
A. $\frac{392}{3}$ B. 196

C. $\frac{196}{3}$

D. 98

Answer: A

Solution:



Or
$$x \cos \frac{\pi}{3} + y \sin \frac{\pi}{3} = p$$

$$\frac{x}{2} + \frac{y\sqrt{3}}{2} = p$$

$$\frac{x}{3p} + \frac{y}{2p} = 1$$
Comparing both : $a = 2p, b = \frac{2p}{\sqrt{3}}$
Now area of $\triangle OAB = \frac{1}{2} \cdot ab = \frac{98}{3} \cdot \sqrt{3}$

$$\frac{1}{2} \cdot 2p \cdot \frac{2p}{\sqrt{3}} = \frac{98}{3} \cdot \sqrt{3}$$

$$p^{2} = 49$$

$$a^{2} - b^{2} = 4p^{2} - \frac{4p^{2}}{3} = \frac{2}{3}4p^{2}$$

$$= \frac{8}{3} \cdot 49 = \frac{392}{3}$$

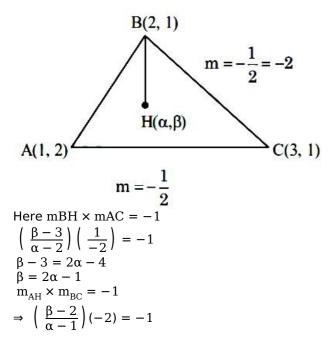
Question23

If the orthocentre of the triangle, whose vertices are (1, 2), (2, 3) and (3, 1) is (α , β), then the quadratic equation whose roots are α + 4 β and 4 α + β , is [1-Feb-2023 Shift 1]

Options:

A. $x^{2} - 19x + 90 = 0$ B. $x^{2} - 18x + 80 = 0$ C. $x^{2} - 22x + 120 = 0$ D. $x^{2} - 20x + 99 = 0$

Answer: D



```
 \Rightarrow 2\beta - 4 = \alpha - 1 

\Rightarrow 2(2\alpha - 1) = \alpha + 3 

\Rightarrow 3\alpha = 5 

\alpha = \frac{5}{3}, \beta = \frac{7}{3} \Rightarrow H\left(\frac{5}{3}, \frac{7}{3}\right) 

\alpha + 4\beta = \frac{5}{3} + \frac{28}{3} = \frac{33}{3} = 11 

\beta + 4\alpha = \frac{7}{3} + \frac{20}{3} = \frac{27}{3} = 9 

x^{2} - 20x + 99 = 0
```

Question24

The combined equation of the two lines ax + by + c = 0 and ax + by + c = 0 can be written as (ax + by + c)(ax + by + c) = 0The equation of the angle bisectors of the lines represented by the equation $2x^2 + xy - 3y^2 = 0$ is [1-Feb-2023 Shift 1]

Options:

A. $3x^{2} + 5xy + 2y^{2} = 0$ B. $x^{2} - y^{2} + 10xy = 0$ C. $3x^{2} + xy - 2y^{2} = 0$ D. $x^{2} - y^{2} - 10xy = 0$

Answer: D

Solution:

Solution:

```
Equation of the pair of angle bisector for the homogenous equation ax^2 + 2hxy + b^2 = 0 is given as

\frac{x^2 - y^2}{a - b} = \frac{xy}{h}
Here a = 2, h = 1 / 2\&b = -3

Equation will become

\frac{x^2 - y^2}{2 - (-3)} = \frac{xy}{1 / 2}
x^2 - y^2 = 10xy
x^2 - y^2 - 10xy = 0
```

Question25

The straight lines 1_1 and 1_2 pass through the origin and trisect the line segment of the line L : 9x + 5y = 45 between the axes. If m_1 and m_2 are the slopes of the lines 1_1 and 1_2 , then the point of intersection of the line $y = (m_1 + m_2)x$ with L lies on. [6-Apr-2023 shift 1]

Options:

A. 6x + y = 10

B. 6x - y = 15

C. y - 2x = 5

D. y - x = 5

Answer: D

Solution:

ı.

Solution:

which satisfy y - x = 5 Ans. 4

Question26

Let A(0, 1), B(1, 1) and C(1, 0) be the mid-points of the sides of a triangle with incentre at the point D. If the focus of the parabola

 $y^2 = 4$ ax passing through D is ($\alpha + \beta \sqrt{3}$, 0), where α and β are rational numbers, then $\frac{\alpha}{\beta^2}$ is equal to

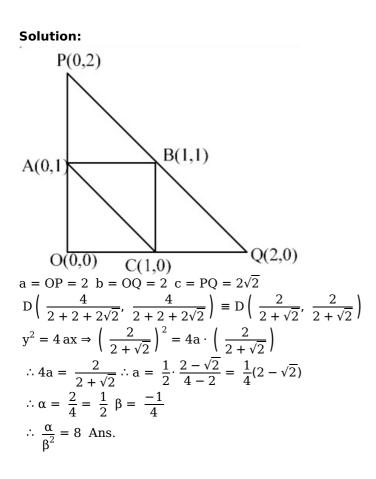
[8-Apr-2023 shift 2]

Options:

- A. 6
- B. 8
- C. $\frac{9}{2}$
- D. 12

Answer: B

Solution:



Question27

The area of the quadrilateral ABCD with vertices A(2, 1, 1), B(1, 2, 5), C(-2, -3, 5) and D(1, -6, -7) is equal to [8-Apr-2023 shift 2]

Options:

A. 54

B. 9√38

C. 48

D. 8√38

Answer: D

Solution:

Solution:

$$\begin{aligned} & \bigcap_{A} \bigcap_{A} \bigcap_{B} \bigcap_{A} \bigcap_{B} \bigcap_{A} \bigcap_{B} \bigcap_{A} \bigcap_{A} \bigcap_{B} \bigcap_{A} \bigcap_{A} \bigcap_{B} \bigcap_{A} \bigcap_{A}$$

Question28

A line segment AB of length λ moves such that the points A and B remain on the periphery of a circle of radius λ . Then the locus of the point, that divides the line segment AB in the ratio 2 : 3, is a circle of radius :

[10-Apr-2023 shift 1]

Options:

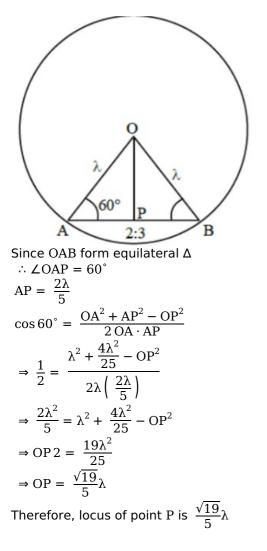
A.
$$\frac{2}{3}\lambda$$

B. $\frac{\sqrt{19}}{7}\lambda$
C. $\frac{3}{5}\lambda$

D.
$$\frac{\sqrt{19}}{5}\lambda$$

Answer: D

Solution:



Question29

Let A be the point (1, 2) and B be any point on the curve $x^2 + y^2 = 16$. If the centre of the locus of the point P, which divides the line segment AB in the ratio 3 : 2 is the point C(α , β) then the length of the line segment AC is

[10-Apr-2023 shift 2]

Options:

A. $\frac{6\sqrt{5}}{5}$ B. $\frac{2\sqrt{5}}{5}$

C. $\frac{3\sqrt{5}}{5}$

D. $\frac{4\sqrt{5}}{5}$

Answer: C

Solution:

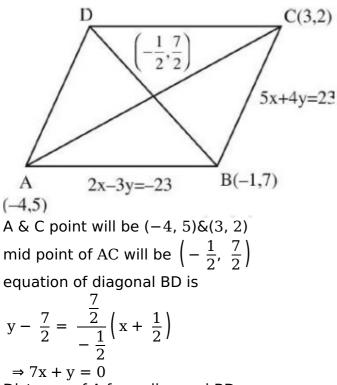
A(1, 2) P(h,k) B(4cos θ , 4sin θ) $\frac{12\cos\theta + 2}{5} = h \Rightarrow 12\cos\theta = 5h - 2$ sq & add $144 = (5h - 2)^2 + (5k - 4)^2$ $\left(x - \frac{2}{5}\right)^2 + \left(y - \frac{4}{5}\right)^2 = \frac{144}{25}$ Centre $\equiv \left(\frac{2}{5}, \frac{4}{5}\right) \equiv (\alpha, \beta)$ AC $= \sqrt{\left(1 - \frac{2}{5}\right)^2 + \left(2 - \frac{4}{5}\right)^2}$ $= \sqrt{\frac{9}{25} + \frac{36}{25}} = \frac{\sqrt{45}}{5} = \frac{3\sqrt{5}}{5}$

Question30

Let the equations of two adjacent sides of a parallelogram ABCD be 2x - 3y = -23 and 5x + 4y = 23. If the equation of its one diagonal AC is 3x + 7y = 23 and the distance of A from the other diagonal is d, then $50d^2$ is equal to _____. [10-Apr-2023 shift 2]

Answer: 529

Solution:



Distance of A from diagonal BD = d = $\frac{23}{\sqrt{50}}$ $\Rightarrow 50d^2 = (23)^2$ 50d² = 529

Question31

Let R be a rectangle given by the line x = 0, x = 2, y = 0 and y = 5. Let A(α , 0) and B(0, β), $\alpha \in [0, 2]$ and $\beta \in [0, 5]$, be such that the line segment AB divides the area of the rectangle R in the ratio 4 : 1. Then, the midpoint of AB lies on a : [11-Apr-2023 shift 1]

Options:

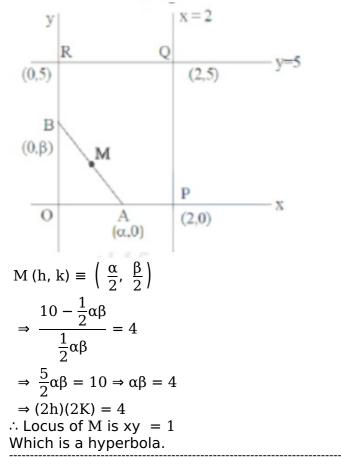
A. straight line

- B. parabola
- C. circle
- D. hyperbola

Answer: D

Solution:

 $\frac{ar(OPQR)}{or(OAB)} = \frac{4}{1}$ Let M be the mid-point of AB.



If the line $l_1 : 3y - 2x = 3$ is the angular bisector of the line $l_2 : x - y + 1 = 0$ and $l_3 : ax + \beta y + 17$, then $\alpha^2 + \beta^2 - \alpha - \beta$ is equal to

[11-Apr-2023 shift 2]

Answer: 348

Solution:

Point of intersection of $l_1: 3y - 2x = 3$ $l_2: x - y + 1 = 0$ is $P \equiv (0, 1)$ Which lies on $l_3: \alpha x - \beta y + 17 = 0$, $\Rightarrow \beta = -17$ Consider a random point $Q \equiv (-1, 0)$ on $l_2: x - y + 1 = 0$, image of Q about $l_2: x - y + 1 = 0$, is $Q' \equiv \left(\frac{-17}{13}, \frac{6}{13}\right)$ which is calculated by formulae $\frac{x - (-1)}{2} = \frac{y - 0}{-3} = 2\left(\frac{-2 + 3}{13}\right)$ Now, Q lies in $l_3: \alpha x + \beta y + 17 = 0$ $\Rightarrow \alpha = 7$ Now, $\alpha^2 + \beta^2 - \alpha - \beta = 348$

Question33

If the point $\left(\alpha, \frac{7\sqrt{3}}{3}\right)$ lies on the curve traced by the mid-points of the line segments of the lines $x\cos\theta + y\sin\theta = 7, \theta \in \left(0, \frac{\pi}{2}\right)$ between the co-ordinates axes, then α is equal to [12-Apr-2023 shift 1]

Options:

A. 7√3

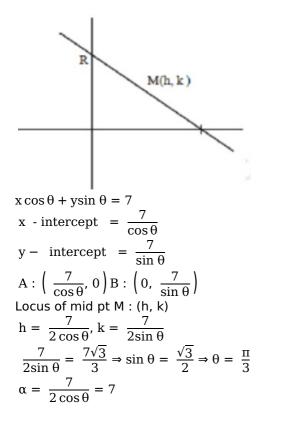
B. -7

C. 7

D. $-7\sqrt{3}$

Answer: C

pt
$$\left(\alpha, \frac{7\sqrt{3}}{3}\right)$$

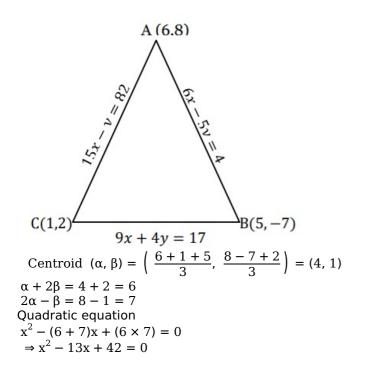


Let (α, β) be the centroid of the triangle formed by the lines 15x - y = 82, 6x - 5y = -4 and 9x + 4y = 17. Then $\alpha + 2\beta$ and $2\alpha - \beta$ are the roots of the equation [13-Apr-2023 shift 2]

Options:

A. $x^{2} - 13x + 42 = 0$ B. $x^{2} - 10x + 25 = 0$ C. $x^{2} - 7x + 12 = 0$ D. $x^{2} - 14x + 48 = 0$

Answer: A



If (α, β) is the orthocenter of the triangle ABC with vertices A(3, -7), B(-1, 2) and C(4, 5), then $9\alpha - 6\beta + 60$ is equal to [15-Apr-2023 shift 1]

Options:

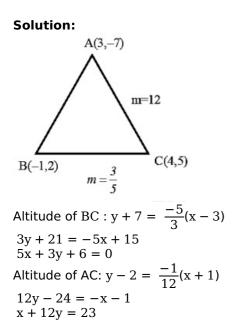
A. 30

B. 35

C. 40

D. 25

Answer: D



 $\alpha = \frac{-47}{19}, \ \beta = \frac{121}{57}$ $9\alpha - 6\beta + 60 = 25$

Question36

From the top A of a vertical wall AB of height 30m, the angles of depression of the top P and bottom Q of a vertical tower PQ are 15° and 60° respectively, B and Q are on the same horizontal level. If C is a point on AB such that CB = PQ, then the area (in m²) of the quadrilateral BCPQ is equal to : [6-Apr-2023 shift 1]

Options:

A. $200(3 - \sqrt{3})$

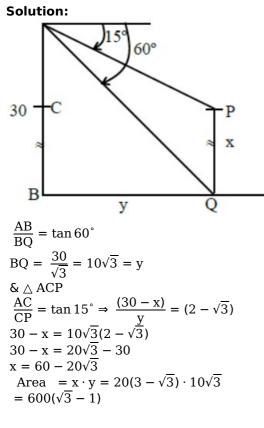
B. $300(\sqrt{3} + 1)$

C. $300(\sqrt{3} - 1)$

D. $600(\sqrt{3} - 1)$

Answer: D

Solution:



Question37

The angle of elevation of the top P of a tower from the feet of one person standing due South of the tower is 45° and from the feet of another person standing due west of the tower is 30°. If the height of the tower is 5 meters, then the distance (in meters) between the two persons is equal to [11-Apr-2023 shift 2]

Options:

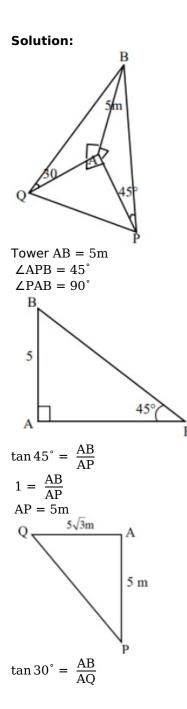
A. 10

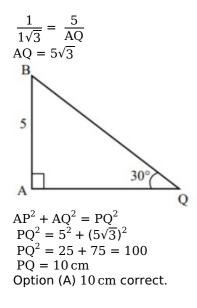
B. $5\sqrt{5}$

C. $\frac{5}{2}\sqrt{5}$

D. 5

Answer: A





Let $A\left(\frac{3}{\sqrt{a}}, \sqrt{a}\right)$, a > 0, be a fixed point in the xy-plane. The image of A in y-axis be B and the image of B in x-axis be C. If $D(3\cos\theta, a\sin\theta)$ is a point in the fourth quadrant such that the maximum area of $\triangle ACD$ is 12 square units, then a is equal to [24-Jun-2022-Shift-1]

Let $A\left(\frac{3}{\sqrt{a}}, \sqrt{a}\right)$, a > 0, be a fixed point in the xy-plane. The image of A in y-axis be B and the image of B in x-axis be C. If $D(3\cos\theta, a\sin\theta)$ is a point in the fourth quadrant such that the maximum area of $\triangle ACD$ is 12 square units, then a is equal to _____ [24-Jun-2022-Shift-1]

Answer: 8

Clearly *B* is
$$\left(-\frac{3}{\sqrt{a}}, +\sqrt{a}\right)$$
 and *C* is $\left(-\frac{3}{\sqrt{a}}, -\sqrt{a}\right)$

Area of
$$\triangle ACD = \frac{1}{2} \begin{vmatrix} \frac{3}{\sqrt{a}} & \sqrt{a} & 1 \\ -\frac{3}{\sqrt{a}} & -\sqrt{a} & 1 \\ 3\cos\theta & a\sin\theta & 1 \end{vmatrix}$$

$$\Rightarrow \Delta = \begin{vmatrix} 0 & 0 & 1 \\ -\frac{3}{\sqrt{a}} & -\sqrt{a} & 1 \\ 3\cos\theta & a\sin\theta & 1 \end{vmatrix}$$

$$\Rightarrow \Delta = |3\sqrt{a}\sin\theta + 3\sqrt{a}\cos\theta| = 3\sqrt{a}|\sin\theta + \cos\theta|$$

$$\Rightarrow \Delta_{\max} = 3\sqrt{a} \cdot \sqrt{2} = 12 \Rightarrow a = (2\sqrt{2})^2 = 8$$

Let the area of the triangle with vertices A(1, α), B(α , 0) and C(0, α) be 4 sq. units. If the points (α , – α), (– α , α) and (α^2 , β) are collinear, then β is equal to [24-Jun-2022-Shift-2]

Options:

A. 64

В. **-**8

C. -64

D. 512

Answer: C

 \therefore A(1, α), B(α , 0) and C(0, α) are the vertices of \triangle ABC and area of \triangle ABC = 4

 $\left| \begin{array}{c} 1 \\ \frac{1}{2} \\ \frac{1}{\alpha} \\ 0 \\ \alpha \\ 1 \\ 0 \\ \alpha \\ 1 \\ \end{array} \right| = 4$ $\Rightarrow \left| 1(1 - \alpha) - \alpha(\alpha) + \alpha^{2} \right| = 8$ $\Rightarrow \alpha = \pm 8$ Now, $(\alpha, -\alpha), (-\alpha, \alpha)$ and (α^{2}, β) are collinear $\left| \begin{array}{c} 8 \\ -8 \\ 64 \\ \beta \\ 1 \\ \end{array} \right| = 0 = \left| \begin{array}{c} -8 \\ 8 \\ -8 \\ 64 \\ \beta \\ 1 \\ \end{array} \right|$ $\Rightarrow 8(8 - \beta) + 8(-8 - 64) + 1(-8\beta - 8 \times 64) = 0$ $\Rightarrow 8 - \beta - 72 - \beta - 64 = 0$ $\Rightarrow \beta = -64$

Question40

Let R be the point (3, 7) and let P and Q be two points on the line x + y = 5 such that PQR is an equilateral triangle. Then the area of \triangle PQR is : [26-Jun-2022-Shift-1]

Options:

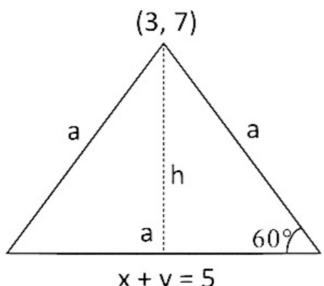
A. $\frac{25}{4\sqrt{3}}$

B. $\frac{25\sqrt{3}}{2}$

C. $\frac{25}{\sqrt{3}}$

D. $\frac{25}{2\sqrt{3}}$

Answer: D



$$x + y = 5$$

Let, side of triangle = a.

$$h = \frac{|3+7-5|}{\sqrt{1^2+1^2}} = \frac{5}{\sqrt{2}}$$

From figure, $h = a \sin 60^{\circ}$

$$\Rightarrow a = \frac{2h}{\sqrt{3}}$$
$$= \frac{2}{\sqrt{3}} \times \frac{5}{\sqrt{2}}$$
$$= \frac{10}{\sqrt{6}}$$

$$\therefore \text{ Area } = \frac{3}{4} \left(\frac{10}{\sqrt{6}} \right)^2$$
$$= \frac{25}{2\sqrt{3}}$$

Question41

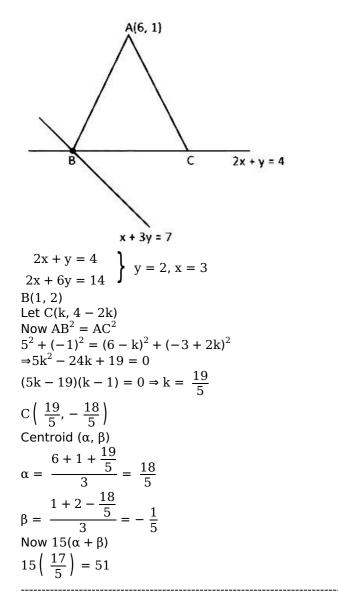
In an isosceles triangle ABC, the vertex A is (6, 1) and the equation of the base BC is 2x + y = 4. Let the point B lie on the line x + 3y = 7. If (α, β) is the centroid of $\triangle ABC$, then $15(\alpha + \beta)$ is equal to: [27-Jun-2022-Shift-1]

Options:

- A. 39
- B. 41
- C. 51
- D. 63

Answer: C

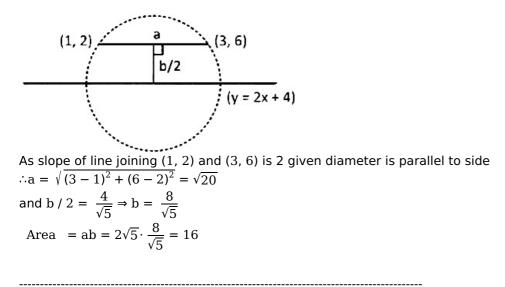
Solution:



Question42

A rectangle R with end points of one of its sides as (1, 2) and (3, 6) is inscribed in a circle. If the equation of a diameter of the circle is 2x - y + 4 = 0, then the area of R is [27-Jun-2022-Shift-1]

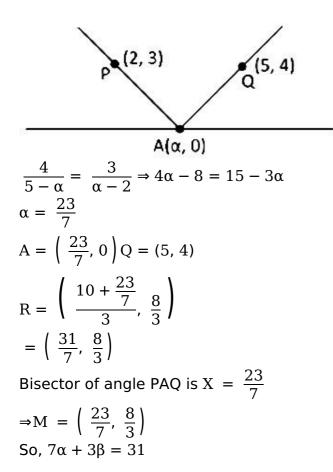
Answer: 16



A ray of light passing through the point P(2, 3) reflects on the x-axis at point A and the reflected ray passes through the point Q(5, 4). Let R be the point that divides the line segment AQ internally into the ratio 2 : 1. Let the co-ordinates of the foot of the perpendicular M from R on the bisector of the angle PAQ be (α, β) . Then, the value of $7\alpha + 3\beta$ is equal to

[28-Jun-2022-Shift-1]

Answer: 31



Let a triangle be bounded by the lines

 $L_1 : 2x + 5y = 10; L_2 : -4x + 3y = 12$ and the line L_3 , which passes through the point P(2, 3), intersects L_2 at A and L_1 at B. If the point P divides the line-segment AB, internally in the ratio 1 : 3, then the area of the triangle is equal to : [28-Jun-2022-Shift-2]

Options:

A.	<u>110</u> 13	
B.	<u>132</u> 13	
C.	<u>142</u> 13	
	4 - 4	

D. $\frac{151}{13}$

Answer: B

Solution:

Solution: L₁ : 2x + 5y = 10 L₂ : -4x + 3y = 12 P(2, 3) A 1 L, 3 B L, = 2x + 5y = 10 L₂ = -4x + 3y = 12 Solving L₁ and L₂ we get C = $\left(\frac{-15}{13}, \frac{32}{13}\right)$ Now, Let A $\left(x_1, \frac{1}{3}(12 + 4x_1)\right)$ and B $\left(x_2, \frac{1}{5}(10 - 2x_2)\right)$ $\therefore \frac{3x_1 + x_2}{4} = 2$ and $\frac{(12 + 4x_1) + \frac{10 - 2x_2}{5}}{4} = 3$ So, $3x_1 + x_2 = 8$ and $10x_1 - x_2 = -5$ So, $(x_1, x_2) = \left(\frac{3}{13}, \frac{95}{13}\right)$ A = $\left(\frac{3}{13}, \frac{56}{13}\right)$ and B = $\left(\frac{95}{13}, \frac{-12}{13}\right)$ = $\left|\frac{1}{2}\left(\frac{3}{13}\left(\frac{-44}{13}\right), \frac{-56}{13}\left(\frac{110}{13}\right) + 1\left(\frac{2860}{169}\right)\right)$.

The distance between the two points A and A[´] which lie on y = 2 such that both the line segments AB and A[´]B (where B is the point (2, 3)) subtend angle $\frac{\pi}{4}$ at the origin, is equal to: [29-Jun-2022-Shift-1]

Options:

A. 10

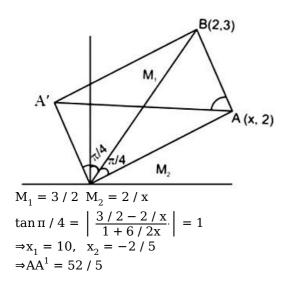
B. $\frac{48}{5}$

C. $\frac{52}{5}$

D. 3

Answer: C

Solution:



Question46

The distance of the origin from the centroid of the triangle whose two sides have the equations x - 2y + 1 = 0 and 2x - y - 1 = 0 and whose

orthocenter is $\left(\frac{7}{3}, \frac{7}{3}\right)$ is : [29-Jun-2022-Shift-2]

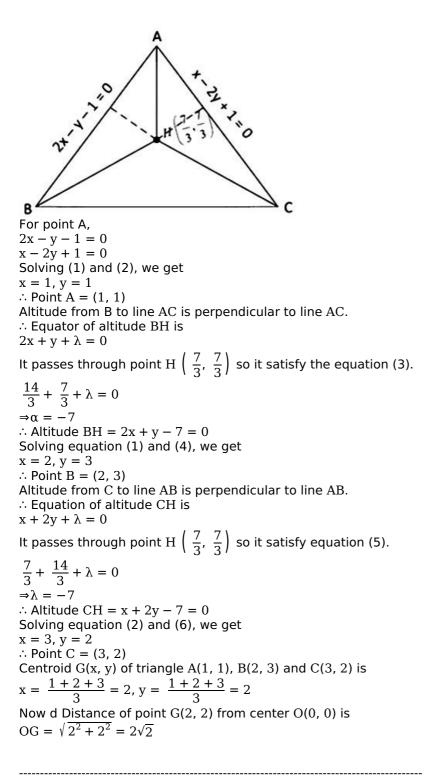
Options:

A. $\sqrt{2}$ B. 2 C. $2\sqrt{2}$

D. 4

Answer: C

Solution:



Question47

Let AB and PQ be two vertical poles, 160m apart from each other. Let C be the middle point of B and Q, which are feet of these two poles. Let $\frac{\pi}{8}$ and θ be the angles of elevation from C to P and A, respectively. If the height of pole PQ is twice the height of pole AB, then $\tan^2\theta$ is equal to [28-Jun-2022-Shift-1]

Options:

A.
$$\frac{3-2\sqrt{2}}{2}$$

B.
$$\frac{3+\sqrt{2}}{2}$$

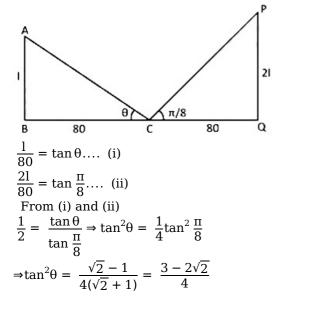
C.
$$\frac{3-2\sqrt{2}}{4}$$

D.
$$\frac{3-\sqrt{2}}{4}$$

Answer: C

Solution:

Solution:



Question48

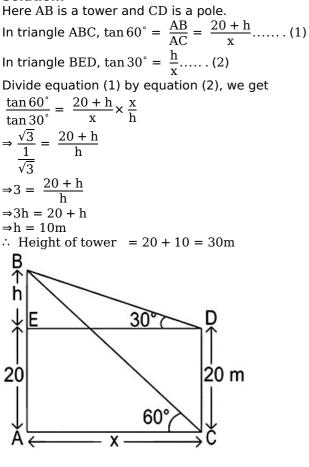
From the base of a pole of height 20 meter, the angle of elevation of the top of a tower is 60°. The pole subtends an angle 30° at the top of the tower. Then the height of the tower is [29-Jun-2022-Shift-2]

Options:

- A. $15\sqrt{3}$
- B. 20√3
- C. 20 + $10\sqrt{3}$
- D. 30

Answer: D

Solution:



Question49

A line, with the slope greater than one, passes through the point A(4, 3) and intersects the line x - y - 2 = 0 at the point B. If the length of the line segment AB is $\frac{\sqrt{29}}{3}$, then B also lies on the line: [25-Jul-2022-Shift-1]

Options:

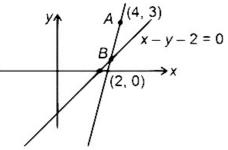
A. 2x + y = 9

B. 3x - 2y = 7

C. x + 2y = 6

D. 2x - 3y = 3

Answer: C



Let inclination of required line is θ , So the coordinates of point B can be assumed as

 $\begin{pmatrix} 4 - \frac{\sqrt{29}}{3}\cos\theta, 3 - \frac{\sqrt{29}}{3}\sin\theta \end{pmatrix}$ Which satisfices x - y - 2 = 0 $4 - \frac{\sqrt{29}}{3}\cos\theta - 3 + \frac{\sqrt{29}}{3}\sin\theta - 2 = 0$ sin $\theta - \cos\theta = \frac{3}{\sqrt{29}}$ By squaring
sin $2\theta = \frac{20}{29} = \frac{2\tan\theta}{1 + \tan^2\theta}$ tan $\theta = \frac{5}{2}$ only (because slope is greater than 1)
sin $\theta = \frac{5}{\sqrt{29}}$, $\cos\theta = \frac{2}{\sqrt{29}}$ Point B : $\left(\frac{10}{3}, \frac{4}{3}\right)$ Which also satisfies x + 2y = 6

Question50

Let the point $P(\alpha, \beta)$ be at a unit distance from each of the two lines $L_1 : 3x - 4y + 12 = 0$, and $L_2 : 8x + 6y + 11 = 0$. If P lies below L_1 and above L_2 , then $100(\alpha + \beta)$ is equal to [25-Jul-2022-Shift-2]

Options:

A. -14

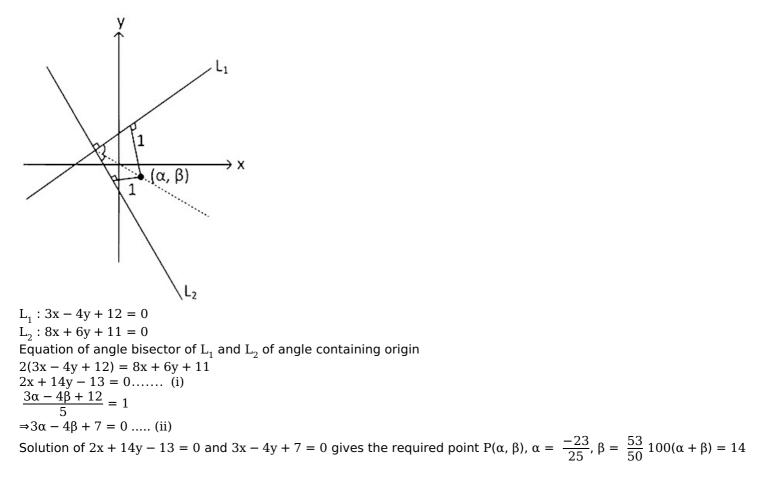
B. 42

C. –22

D. 14

Answer: D

Solution:



A point P moves so that the sum of squares of its distances from the points (1, 2) and (-2, 1) is 14. Let f (x, y) = 0 be the locus of P, which intersects the x-axis at the points A, B and the y-axis at the points C, D. Then the area of the quadrilateral ACBD is equal to : [26-Jul-2022-Shift-1]

Options:

A. $\frac{9}{2}$

B. $\frac{3\sqrt{17}}{2}$

C. $\frac{3\sqrt{17}}{4}$

D. 9

Answer: B

Solution:

```
Solution:
```

Let point P : (h, k) $(h - 1)^2 + (k - 2)^2 + (h + 2)^2 + (k - 1)^2 = 14$ $2h^2 + 2k^2 + 2h - 6k - 4 = 0$ Locus of P : $x^2 + y^2 + x - 3y - 2 = 0$ Intersection with x -axis, $x^2 + x - 2 = 0$

⇒x = -2, 1
Intersection with y-axis,

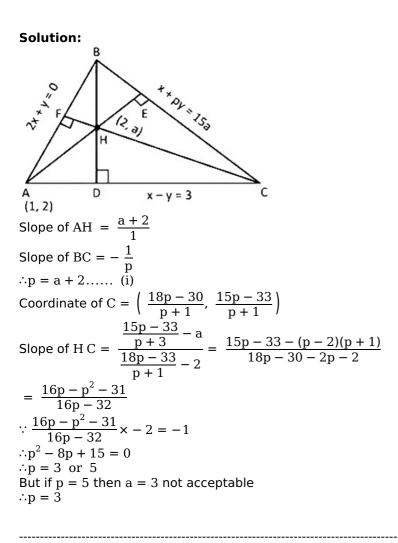
$$y^2 - 3y - 2 = 0$$

⇒y = $\frac{3 \pm \sqrt{17}}{2}$
Area of the quadrilateral ACBD is
= $\frac{1}{2}(|x_1| + |x_2|)(|y_1| + |y_2|)$
= $\frac{1}{2} \times 3 \times \sqrt{17} = \frac{3\sqrt{17}}{2}$

Question52

The equations of the sides AB, BC and CA of a triangle ABC are 2x + y = 0, x + py = 15a and x - y = 3 respectively. If its orthocentre is (2, a), $-\frac{1}{2} < a < 2$, then p is equal to _____. [26-Jul-2022-Shift-1]

Answer: 3



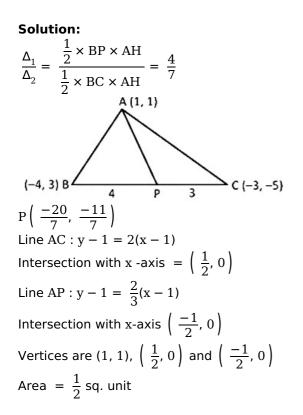
Let A(1, 1), B(-4, 3), C(-2, -5) be vertices of a triangle ABC, P be a point on side BC, and Δ_1 and Δ_2 be the areas of triangles APB and ABC, respectively. If $\Delta_1 : \Delta_2 = 4 : 7$, then the area enclosed by the lines AP, AC and the x-axis is [27-Jul-2022-Shift-1]

Options:

A. $\frac{1}{4}$ B. $\frac{3}{4}$ C. $\frac{1}{2}$ D. 1

Answer: C

Solution:



Question54

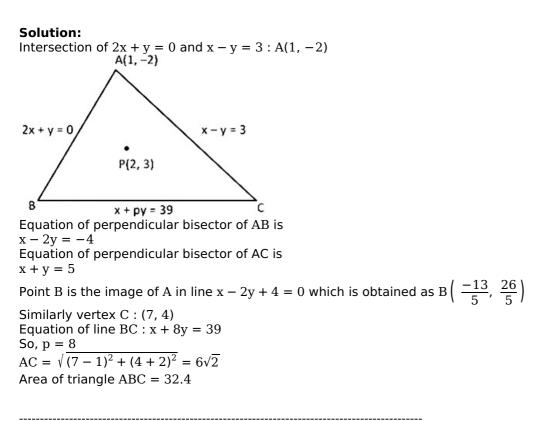
The equations of the sides AB, BC and CA of a triangle ABC are 2x + y = 0, x + py = 39 and x - y = 3 respectively and P(2, 3) is its circumcentre. Then which of the following is NOT true? [27-Jul-2022-Shift-2]

Options:

A. $(AC)^2 = 9p$ B. $(AC)^2 + p^2 = 136$ C. $32 < area(\Delta ABC) < 36$ D. $34 < area(\triangle ABC) < 38$

Answer: D

Solution:



Question55

For $t \in (0, 2\pi)$, if ABC is an equilateral triangle with vertices A(sin t, $-\cos t$), B(cost, sin t) and C(a, b) such that its orthocentre lies on a circle with centre $(1, \frac{1}{3})$, then $(a^2 - b^2)$ is equal to: [28-Jul-2022-Shift-1]

Options:

A. $\frac{8}{3}$

B. 8

C. $\frac{77}{9}$

D. $\frac{80}{9}$

Answer: B

Solution: Let P(h, k) be the orthocentre of $\triangle ABC$ A(sint, - cost) A(sint, - cost) B(cost, sint) C(a, b) Then $h = \frac{\sin t + \cos t + a}{3}, k = \frac{-\cos t + \sin t + b}{3}$ (orthocentre coincide with centroid) $\therefore (3h - a)^2 + (3k - b)^2 = 2$ $\therefore (h - \frac{a}{3})^2 + (k - \frac{b}{3})^2 = \frac{2}{9}$ \therefore orthocentre lies on circle with centre $(1, \frac{1}{3})$ $\therefore a = 3, b = 1$ $\therefore a^2 - b^2 = 8$

Question56

Let the circumcentre of a triangle with vertices A(a, 3), B(b, 5) and C(a, b), ab > 0 be P(1, 1). If the line AP intersects the line BC at the point Q(k₁, k₂), then k₁ + k₂ is equal to : [29-Jul-2022-Shift-1]

Options:

A. 2

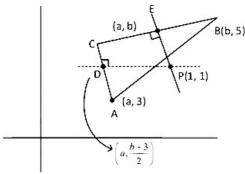
B. $\frac{4}{7}$

C. $\frac{2}{7}$

D. 4

Answer: B

Solution:



Let D be mid-point of AC, then $\frac{b+3}{2} = 1 \Rightarrow b = -1$ Let E be mid-point of BC, $\frac{5-b}{b-a} \cdot \frac{2}{\frac{a+b}{2}-1} = -1$ On putting b = -1, we get a = 5 or -3 But a = 5 is rejected as ab > 0 A(-3, 3), B(-1, 5), C(-3, -1), P(1, 1) Line BC \Rightarrow y = $\frac{3-x}{2}$ Point of intersection $\left(\frac{-13}{7}, \frac{17}{7}\right)$

Question57

Let m_1 , m_2 be the slopes of two adjacent sides of a square of side a such that $a^2 + 11a + 3(m_1^2 + m_2^2) = 220$. If one vertex of the square is

 $(10(\cos \alpha - \sin \alpha), 10(\sin \alpha + \cos \alpha))$, where $\alpha \in (0, \frac{\pi}{2})$ and the equation of one diagonal is $(\cos \alpha - \sin \alpha)x + (\sin \alpha + \cos \alpha)y - 10$, then $72(\sin^4 \alpha + \cos^4 \alpha) + a^2 - 3a + 13$ is equal to: [29-Jul-2022-Shift-2]

Options:

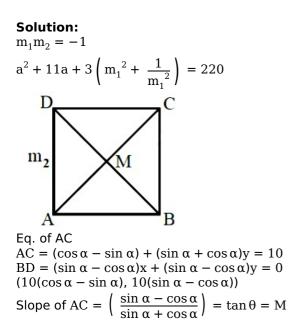
A. 119

B. 128

C. 145

D. 155

Answer: B



Eq. of line making an angle $\boldsymbol{\pi}_4$ with AC

 $\mathbf{m}_{1}, \mathbf{m}_{2} = \frac{\mathbf{m} \pm \tan \frac{\pi}{4}}{1 \pm \mathrm{m} \tan \frac{\pi}{4}}$ $= \frac{m+1}{1-m} \text{ or } \frac{m-1}{1+m}$ $\frac{\frac{\sin \alpha - \cos \alpha}{\sin \alpha + \cos \alpha} + 1}{1 - \left(\frac{\sin \alpha - \cos \alpha}{\sin \alpha + \cos \alpha}\right)}$ $\frac{\sin \alpha - \cos \alpha}{\sin \alpha + \cos \alpha} - 1$ $1 + \frac{\sin \alpha - \cos \alpha}{2}$ $\sin \alpha + \cos \alpha$ $m_1, m_2 = \tan \alpha, \cot \alpha$ mid point of AC& BD = M(5($\cos \alpha - \sin \alpha$), 5($\cos \alpha + \sin \alpha$)) B $(10(\cos \alpha - \sin \alpha), 10(\cos \alpha + \sin \alpha))$ $a = AB = \sqrt{2} BM = \sqrt{2}(5\sqrt{2}) = 10$ a = 10 $\therefore a^{2} + 11a + 3\left(m_{1}^{2} + \frac{1}{m_{1}2}\right) = 220$ $100 + 110 + 3(\tan^2 \alpha + \cot^2 \alpha) = 220$ Hence $\tan^2 \alpha = 3$, $\tan^2 \alpha = \frac{1}{3} \Rightarrow \alpha = \frac{\pi}{3}$ or $\frac{\pi}{6}$ Now 72($\sin^4 \alpha + \cos^4 \alpha$) + $a^2 - 3a + 13$ $= 72\left(\frac{9}{16} + \frac{1}{16}\right) + 100 - 30 + 13$ $= 72\left(\frac{5}{8}\right) + 83 = 45 + 83 = 128$

Question58

Let A(α , -2), B(α , 6) and C $\left(\frac{\alpha}{4}, -2\right)$ be vertices of a $\triangle ABC$. If $\left(5, \frac{\alpha}{4}\right)$ is the circumcentre of $\triangle ABC$, then which of the following is NOT correct about $\triangle ABC$? [29-Jul-2022-Shift-2]

Options:

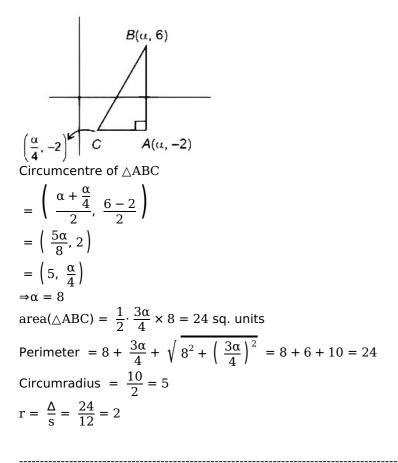
A. area is 24

B. perimeter is 25

C. circumradius is 5

D. inradius is 2

Answer: B



A tower PQ stands on a horizontal ground with base Q on the ground. The point R divides the tower in two parts such that QR = 15m. If from a point A on the ground the angle of elevation of R is 60° and the part PR of the tower subtends an angle of 15° at A, then the height of the tower is :

[25-Jul-2022-Shift-1]

Options:

A. $5(2\sqrt{3} + 3)m$

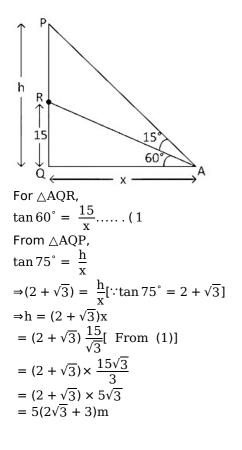
B. $5(\sqrt{3} + 3)m$

C. $10(\sqrt{3} + 1)m$

D. $10(2\sqrt{3} + 1)m$

Answer: A

Solution:



Let a vertical tower AB of height 2h stands on a horizontal ground. Let from a point P on the ground a man can see upto height h of the tower with an angle of elevation 2α . When from P, he moves a distance d in the direction of \overrightarrow{AP} , he can see the top B of the tower with an angle of elevation α . If d = $\sqrt{7}$ h, then tan α is equal to [27-Jul-2022-Shift-1]

Options:

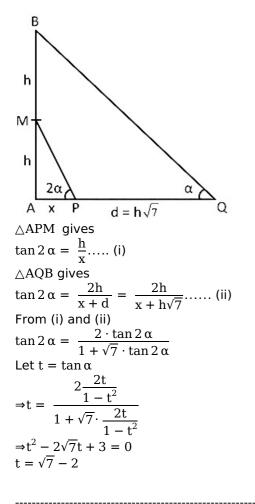
A. $\sqrt{5} - 2$

B. $\sqrt{3} - 1$

C. $\sqrt{7} - 2$

D. $\sqrt{7} - \sqrt{3}$

Answer: C



The angle of elevation of the top P of a vertical tower PQ of height 10 from a point A on the horizontal ground is 45°. Let R be a point on AQ and from a point B, vertically above R, the angle of elevation of P is 60°. If $\angle BAQ = 30^{\circ}$, AB = d and the area of the trapezium PQRB is α , then the ordered pair (d, α) is : [27-Jul-2022-Shift-2]

Options:

A. $(10(\sqrt{3} - 1), 25)$

B.
$$\left(10(\sqrt{3}-1), \frac{25}{2}\right)$$

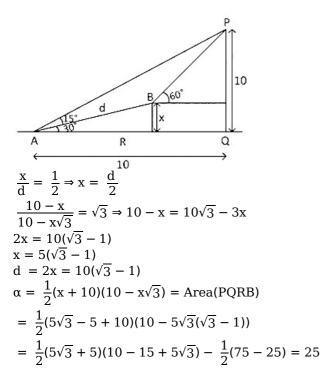
C. $(10(\sqrt{3} + 1), 25)$

D. $\left(10(\sqrt{3}+1), \frac{25}{2}\right)$

Answer: A

Solution:

Solution: Let BR = x



Question62

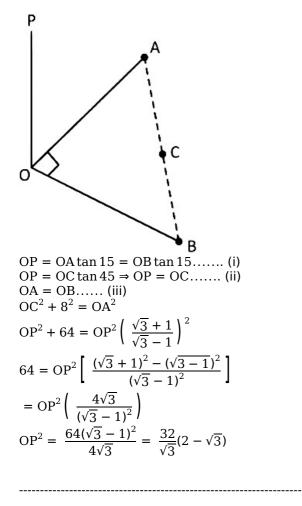
A horizontal park is in the shape of a triangle OAB with AB = 16. A vertical lamp post OP is erected at the point O such that $\angle PAO = \angle PBO = 15^{\circ}$ and $\angle PCO = 45^{\circ}$, where C is the midpoint of AB. Then (OP)² is equal to [28-Jul-2022-Shift-2]

Options:

- A. $\frac{32}{\sqrt{3}}(\sqrt{3}-1)$
- B. $\frac{32}{\sqrt{3}}(2-\sqrt{3})$
- C. $\frac{16}{\sqrt{3}}(\sqrt{3}-1)$
- D. $\frac{16}{\sqrt{3}}(2-\sqrt{3})$

Answer: B

Solution:



The angle of elevation of the top of a tower from a point A due north of it is α and from a point B at a distance of 9 units due west of A is

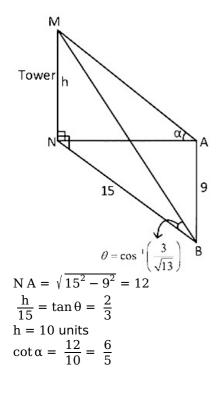
 $\cos^{-1}\left(\frac{3}{\sqrt{13}}\right)$. If the distance of the point B from the tower is 15 units, then $\cot \alpha$ is equal to : [29-Jul-2022-Shift-1]

Options:

A. $\frac{6}{5}$ B. $\frac{9}{5}$ C. $\frac{4}{3}$ D. $\frac{7}{3}$

Answer: A

Solution:



The intersection of three lines x - y = 0, x + 2y = 3 and 2x + y = 6 is a [2021, 26 Feb. Shift-1]

Options:

A. right angled triangle

B. equilateral triangle

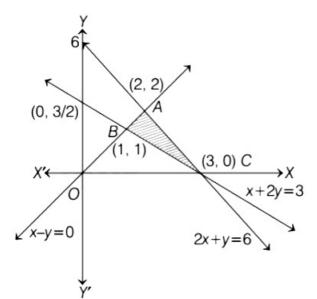
C. isosceles triangle

D. None of these

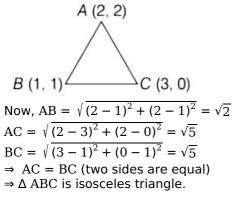
Answer: C

Solution:

Solution: Given lines, x - y = 0, x + 2y = 3, 2x + y = 6







If the curve $x^2 + 2y^2 = 2$ intersects the line x + y = 1 at two points P and Q, then the angle subtended by the line segment PQ at the origin is [2021, 25 Feb. Shift-II]

Options:

- A. $\frac{\pi}{2} + \tan^{-1} \left(\frac{1}{4} \right)$ B. $\frac{\pi}{2} - \tan^{-1} \left(\frac{1}{4} \right)$ C. $\frac{\pi}{2} + \tan^{-1} \left(\frac{1}{3} \right)$
- D. $\frac{\pi}{2} \tan^{-1} \left(\frac{1}{3} \right)$

Answer: A

Solution:

Solution:

Curve $x^2 + 2y^2 = 2$ intersect the line x + y = 1 at points P and Q. First we have to find any common relation between these two curves.

Use substitution for the same as follows,

 $x^2 + 2y^2 = 2$ (i) x + y = 1, then $(x + y)^2 = 1^2$ $\Rightarrow x^2 + y^2 + 2xy = 1$ (ii) $\Rightarrow x^{2} + y^{2} + 2xy = 1 \text{ where (ii)}$ We can write Eq. (i) as, $x^{2} + 2y^{2} - 2(1)^{2} = 0$ $\Rightarrow x^{2} + 2y^{2} - 2(x + y)^{2} = 0 \text{ [using Eq. (ii) in Eq. (i)]}$ $\Rightarrow x^{2} + 2y^{2} - 2x^{2} - 2y^{2} - 4xy = 0$ $\Rightarrow -x^{2} - 4xy = 0 \Rightarrow -x(x + 4y) = 0$ Given, x = 0 and x + 4y = 0 or $y = \frac{-1}{4}x$ Draw the line $y = \frac{-1}{4}x$ on graph and take arbitrary point (any one) as follows, From given graph, γ Х $\tan \theta = \frac{1}{4} \Rightarrow \theta = \tan^{-1} \left(\frac{1}{4} \right)$ We have two lines, $y = -\frac{1}{4}x$ and x = 0 (i.e. Y -axis). Thus, any line joining these two curves makes an angle $\frac{\pi}{2} + \theta$ at origin. \therefore Answer is $\frac{\pi}{2} + \tan^{-1}\left(\frac{1}{4}\right)$.

Question66

The image of the point (3, 5) in the line x - y + 1 = 0, lies on [2021, 25 Feb. Shift-1]

Options:

A.
$$(x - 2)^{2} + (y - 2)^{2} = 12$$

B. $(x - 4)^{2} + (y + 2)^{2} = 16$
C. $(x - 4)^{2} + (y - 4)^{2} = 8$
D. $(x - 2)^{2} + (y - 4)^{2} = 4$

Answer: D

Solution:

Solution: Image of P(3, 5) on the line x - y + 1 = 0 is $\frac{x - 3}{1} = \frac{y - 5}{-1} = \frac{-2(3 - 5 + 1)}{2}$

 $\Rightarrow \frac{x-3}{1} = \frac{y-5}{-1} = 1$ $\Rightarrow \frac{x-3}{1} = 1 \text{ and } \frac{y-5}{-1} = 1$ x = 4, y = 4 \therefore Required image is at (4, 4). Clearly, this point lies on $(x-2)^{2} + (y-4)^{2} = 4$ as (4, 4) satisfies this equation.

A man is walking on a straight line. The arithmetic mean of the reciprocals of the intercepts of this line on the coordinate axes is $\frac{1}{4}$. Three stones A, B and C are placed at the points (1, 1), (2, 2) and (4, 4) respectively. Then which of these stones is\/are on the path of the man?

24 Feb 2021 Shift 1

A. A only

Options:

B. C only

C. All the three

D. B only

Answer: D

Solution:

```
Solution:
Let the line be y = mx + c
\therefore x-intercept : -\frac{c}{m}
y-intercept : c
A.M. of reciprocals of the intercepts :
\frac{-\frac{m}{c} + \frac{1}{c}}{2} = \frac{1}{4} \Rightarrow 2(1 - m) = c
Line : y = mx + 2(1 - m) = c
\Rightarrow (y - 2) - m(x - 2) = 0
\Rightarrow line always passes through (2, 2)
```

Question68

Let A(-1, 1), B(3, 4) and C(2, 0) be given three points. A line y = mx, m > 0 intersects lines AC and BC at point P and Q₁ respectively. Let A₁ and A₂ be the areas of \triangle ABC and \triangle PQC₁ respectively, such that A₁ = 3A₂, then the value of m is equal to [2021, 16 March Shift-II]

Options:

A. $\frac{4}{15}$

B. 1

C. 2

D. 3

Answer: B

Solution:

Solution:

Given, points A(-1, 1), B(3, 4), C(2, 0)Equation of AC = $\frac{y-1}{x+1} = \frac{0-1}{2+1} = \frac{-1}{3}$ $\Rightarrow 3y - 3 = -x - 1 \Rightarrow x + 3y = 2$ (i) On solving Eq. (i) and y = mx, we get P $\left(\frac{2}{3m+1}, \frac{2m}{3m+1}\right)$ Equation of BC = $\frac{y-0}{x-2} = \frac{4-0}{3-2}$ $\Rightarrow y = 4x - 8$ (ii) Similarly, on solving Eq. (ii) and y = mxwe get $0\left(\frac{8}{4-m}, \frac{8m}{4-m}\right)$ B (3, 4) y = mxA (−1, 1) ≪ Q Ρ X'+ γγ C (2, 0) Ο

Area of $\triangle ABC = 3$ Area of $\triangle PQC$ (given)

$$\frac{1}{2} \begin{vmatrix} -1 & 1 & 1 \\ 2 & 0 & 1 \\ 3 & 4 & 1 \end{vmatrix} = 3 \times \frac{1}{2} \begin{vmatrix} 2 & 0 & 1 \\ \frac{8}{4-m} & \frac{8m}{2} & 1 \\ \frac{2}{3m+1} & \frac{2m}{3m+1} & 1 \end{vmatrix}$$
$$\Rightarrow 13 = 3\left(\frac{1}{4-m}\right)\left(\frac{1}{3m+1}\right) \begin{vmatrix} 2 & 0 & 1 \\ 8 & 8m & 4-m \\ 2 & 2m & 3m+1 \end{vmatrix}$$
$$\Rightarrow 13 = \frac{3}{4+11m-3m^2} \times (52m^2)$$
$$\Rightarrow 15m^2 - 11m - 4 = 0$$
$$\Rightarrow m = 1, \ \frac{-4}{15} \ [but m > 0 \]$$
$$\Rightarrow m = 1$$

Question69

In a \triangle PQR, the coordinates of the points P and Q are (-2, 4) and (4, -2), respectively. If the equation of the perpendicular bisector of PR is 2x - y + 2 = 0, then the centre of the circumcircle of the \triangle PQR is [2021, 17 March Shift-1]

Options:

A. (-1, 0) B. (-2, -2)

C. (0, 2)

01 (0) =/

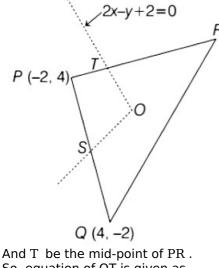
D. (1, 4)

Answer: B

Solution:

Solution:

Let O be the centre of the circumcircle.



So, equation of OT is given as 2x - y + 2 = 0Let S be the mid-point of PQ. Now, S will be $\left(\frac{-2+4}{2}, \frac{4-2}{2}\right) = (1, 1)$ Equation of OS $= \frac{y-1}{x-1} = \frac{-1}{m_{PQ}}$ $m_{PO} = \frac{-2-4}{4+2} = -1$ \therefore OS = y - 1 = 1(x - 1) y = xNow, coordinates of O will be the intersection of lines OS and OT. $\begin{cases} y = x \\ 2x - y + 2 = 0. \end{cases}$ $\Rightarrow 2x - x + 2 = 0 \Rightarrow x = -2$ $\therefore y = -2 \Rightarrow 0 = (-2, -2)$

Question70

The number of integral values of m, so that the abscissa of point of

intersection of lines 3x + 4y = 9 and y = mx + 1 is also an integer, is [2021, 18 March Shift-1]

Options:

- A. 1
- B. 2
- C. 3
- D. 0

Answer: B

Solution:

Solution:

Given, y = mx + 1and 3x + 4y = 9From Eqs. (i) and (ii), 3x + 4(mx + 1) = 9 $\Rightarrow 3x + 4mx + 4 = 9$ $\Rightarrow x(3 + 4m) = 5$ $\Rightarrow x = \frac{5}{3 + 4m}$

Given, that the abscissa of point of intersection of Eqs. (i) and (ii) i.e. $x = \frac{5}{3+4m}$ is an integer.

∴ Possible values of x are
x = 1, -1, 5, -5
i.e.
$$\frac{5}{4m+3} = 1$$
 or $\frac{5}{4m+3} = -1$
or $\frac{5}{4m+3} = 5$ or $\frac{5}{4m+3} = -5$
⇒ 4m = 2 or -4m = 8
or 4m = -2 or -4m = 4
⇒ m = $\frac{1}{2}$, -2, $-\frac{1}{2}$, -1
∴ $\left\{-\frac{1}{2}, \frac{1}{2}\right\} \notin 1$
∴ m = {-1, -2} ∈ 1
∴ Number of integral values of mare 2

Question71

The equation of one of the straight lines which passes through the point (1, 3) and makes an angle $\tan^{-1}(\sqrt{2})$ with the straight line, $y + 1 = 3\sqrt{2}x$ is

[2021, 18 March Shift-1]

Options:

A. $4\sqrt{2}x + 5y - (15 + 4\sqrt{2}) = 0$

- B. $5\sqrt{2}x + 4y (15 + 4\sqrt{2}) = 0$
- C. $4\sqrt{2}x + 5y 4\sqrt{2} = 0$
- D. $4\sqrt{2}x 5y (5 + 4\sqrt{2}) = 0$

Answer: A

Solution:

Solution: Method l Let m = Slope of required line $\theta = \tan^{-1}(\sqrt{2})$: Equation of required line y - 3 = m(x - 1)Given, equation of line is $3\sqrt{2}\mathbf{x} - \mathbf{y} - 1 = 0$ Since, angle θ between Eqs. (i) and (ii) is $\tan^{-1}(\sqrt{2})$ i.e. $\tan \theta = \sqrt{2}$ $\Rightarrow \left| \frac{m - 3\sqrt{2}}{1 + 3\sqrt{2}m} \right| = \sqrt{2}$ (: Slope of Eq. (i) = mand slope of Eq. (ii) = $3\sqrt{2}$) Squaring on both sides, $m^2 - 6\sqrt{2}m + 18 = 2(1 + 18m^2 + 6\sqrt{2}m)$ $\Rightarrow 35m^2 + 18\sqrt{2}m - 16 = 0$ $\therefore m = \frac{-18\sqrt{2} \pm \sqrt{648 + 2240}}{70}$ $= \frac{-18\sqrt{2} \pm 38\sqrt{2}}{70}$ $\Rightarrow m = \frac{2\sqrt{2}}{7}, -\frac{4}{5}\sqrt{2}$ For m = $\frac{2\sqrt{2}}{7}$, equation of required line will be $y - 3 = \frac{2\sqrt{2}}{7}(x - 1)$ $\Rightarrow 2\sqrt{2}x - 7y + 21 - 2\sqrt{2} = 0$ (options are not matching so, neglect this) For m = $\frac{-4\sqrt{2}}{5}$, equation of required line will be $y - 3 = \frac{-4\sqrt{2}}{5}(x - 1)$ $\Rightarrow 5y - 15 = -4\sqrt{2}x + 4\sqrt{2}$ $\Rightarrow 4\sqrt{2}x + 5y - 15 - 4\sqrt{2} = 0$ $\Rightarrow 4\sqrt{2}x + 5y - (15 + 4\sqrt{2}) = 0$

Question72

Consider a triangle having vertices A(-2, 3), B(1, 9) and C(3, 8). If a line L passing through the circumcentre of $\triangle ABC$, bisects line BC, and intersects Y -axis at point $\left(0, \frac{\alpha}{2}\right)$, then the value of real number α is [2021, 20 July Shift-II]

Solution:

Solution: C (3, 8) SB (1, 9) A (-2, 3) AB = $\sqrt{(1+2)^2 + (9-3)^2} = \sqrt{45}$ BC = $\sqrt{(3-1)^2 + (8-9)^2} = \sqrt{5}$ AC = $\sqrt{(3+2)^2 + (8-3)^2} = \sqrt{50}$ $\therefore \ (\sqrt{50})^2 = (\sqrt{45})^2 + (\sqrt{5})^2$ $(AC)^2 = (AB)^2 + (BC)^2$ $\angle B = 90^{\circ}$ \Rightarrow ABC is right angled triangle. Circumcentre = Mid-point of hypotenuse = Mid-point of AC $=\left(\frac{1}{2},\frac{11}{2}\right)$ Mid-point of line BC = $\left(2, \frac{17}{2}\right)$ Line passing through circumcentre and bisect line BC will be $y - \frac{11}{2} = \frac{\frac{17}{2} - \frac{11}{2}}{2 - \frac{1}{2}} \left(x - \frac{1}{2}\right)$ \Rightarrow y - $\frac{11}{2} = \frac{3 \times 2}{3} \left(x - \frac{1}{2} \right)$ $\Rightarrow y - \frac{11}{2} = 2\left(x - \frac{1}{2}\right)$ It passes through $\left(0, \frac{\alpha}{2}\right)$. $\therefore \quad \frac{\alpha}{2} - \frac{11}{2} = 2\left(0 - \frac{1}{2}\right) \Rightarrow \alpha - 11 = 4\left(-\frac{1}{2}\right)$ $\Rightarrow \alpha = 11 - 2 = 9$ $\Rightarrow \alpha = 9$

Question73

Let the equation of the pair of lines, y = px and y = qx can be written as (y - px)(y - qx) = 0 Then, the equation of the pair of the angle bisectors of the line $x^2 - 4xy - 5y^2 = 0$ is [2021, 25 July Shift-II]

Options:

A.
$$x^{2} - 3xy + y^{2} = 0$$

B. $x^{2} + 4xy - y^{2} = 0$
C. $x^{2} + 3xy - y^{2} = 0$

D.
$$x^2 - 3xy - y^2 = 0$$

Answer: C

Solution:

Solution:

Equation of angle bisector of homogeneous equation of pair of straight line $ax^2 + 2hxy + by^2$ is $\frac{x^2 - y^2}{a - b} = \frac{xy}{h}$ For $x^2 - 4xy - 5y^2 = 0$ a = 1, h = -2, b = -5So, equation of angle bisector is $\frac{x^2 - y^2}{1 - (-5)} = \frac{xy}{-2} \Rightarrow x^2 - y^2 = -3xy \Rightarrow x^2 + 3xy - y^2 = 0$ So, combined equation of angle bisector is $x^2 + 3xy - y^2 = 0$. is $x^2 + 3xy - y^2 = 0$.

Question74

Two sides of a parallelogram are along the lines 4x + 5y = 0 and 7x + 2y = 0. If the equation of one of the diagonals of the parallelogram is 11x + 7y = 9, then other diagonal passes through the point [2021, 27 July Shift-II]

Options:

A. (1,2)

B. (2,2)

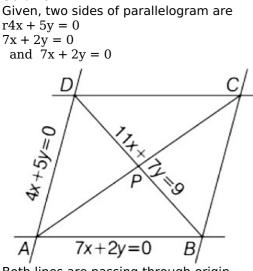
C. (2,1)

D. (1,3)

Answer: B

Solution:

Solution:



Both lines are passing through origin. Thus, point A = (0, 0)

The equation of diagonal is 11x + 7y = 9Point D is the point of intersection of 4x + 5y = 0and 11x + 7y = 9So, coordinate of D = $\left(\frac{5}{3}, -\frac{4}{3}\right)$ Also, point B is the point of intersection of 7x + 2y = 0 and 11x + 7y = 9So, coordinate of point B = $\left(-\frac{2}{3}, \frac{7}{3}\right)$ We know that, diagonals of parallelogram bisects each other. Let P is the middle point of BD.

So, coordinate of

$$P = \left(\frac{\frac{5}{3} + \left(-\frac{2}{3}\right)}{2}, \frac{-\frac{4}{3} + \frac{7}{3}}{2}\right) = \left(\frac{1}{2}, \frac{1}{2}\right)$$

Now, equation of diagonal AC
$$y - 0 = \frac{\frac{1}{2} - 0}{\frac{1}{2} - 0}(x - 0)$$
$$\Rightarrow y = \frac{\frac{1}{2}}{\frac{1}{2}}x \Rightarrow y = x$$

 \therefore Diagonal AC passes through (2, 2).

Question75

Let A be a fixed point (0, 6) and B be a moving point (2t, 0). Let M be the mid-point of AB and the perpendicular bisector of AB meets the Y axis at C.

The locus of the mid-point P of M C is [2021, 27 Aug. Shift-1]

Options:

A. $3x^{2} - 2y - 6 = 0$ B. $3x^{2} + 2y - 6 = 0$ C. $2x^{2} + 3y - 9 = 0$ D. $2x^{2} - 3y + 9 = 0$

Answer: C

Solution:

Solution:

Given, A(0, 6) and B(2t, 0) Mid-point of AB = M (t, 3) Equation of perpendicular bisector of AB passes through M . $\therefore y - 3 = \frac{t}{3}(x - t) \quad \dots \quad (i)$ So, C $\left(0, 3 - \frac{t^2}{3}\right)$ Intersection of Eq. (i) on Y -axis C $\left(0, 3 - \frac{t^2}{3}\right)$ Let mid-point of M C is (h, k) . Then, (h, k) = $\left(\frac{t}{2}, 3 - \frac{t^2}{6}\right)$ $\Rightarrow h = \frac{t}{2}, k = 3 - \frac{t^2}{6}$ Eliminatingt, we get $2h^2 = 3(3 - k)$ Locus of (h, k) $2x^2 = 3(3 - y)$ $\Rightarrow 2x^2 + 3y - 9 = 0$

Question76

Let ABC be a triangle with A(-3, 1) and $\angle ACB = \theta$, $0 < \theta < \frac{\pi}{2}$. If the equation of the median through B is 2x + y - 3 = 0 and the equation of angle bisector of C is 7x - 4y - 1 = 0, then $\tan \theta$ is equal to [2021, 26 Aug. Shift-I]

Options:

A. 1 / 2

B. 3/4

C. 4/3

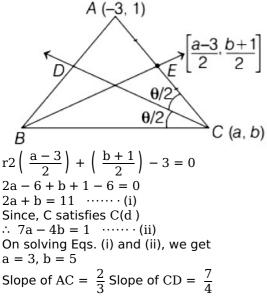
D. 2

Answer: C

Solution:

Solution:

Given, the equation of median through B i.e. BE : 2x + y - 3 = 0Equation, of angle bisector of C i.e. CD : 7x - 4y = 1Since, E satisfies the equation of BE .



$$\therefore \tan\left(\frac{\theta}{2}\right) = \left|\frac{\frac{2}{3} - \frac{7}{4}}{1 + \frac{14}{12}|}\right| = \frac{1}{2}$$

Now, $\tan \theta = \frac{2 \tan\left(\frac{\theta}{2}\right)}{1 - \tan^2\left(\frac{\theta}{2}\right)} = \frac{2 \cdot \frac{1}{2}}{1 - \frac{1}{4}} = \frac{4}{3}$

Question77

If p and q are the lengths of the perpendiculars from the origin on the lines, xcoseca – yseca = kcot2a and xsina + ycosa = ksin2a respectively, then k^2 is equal to [2021, 31 Aug. Shift-1]

Options:

A. $4p^{2} + q^{2}$ B. $2p^{2} + q^{2}$ C. $p^{2} + 2q^{2}$ D. $2p^{2} + q^{2} p^{2} + 4q^{2}$

Answer: A

Solution:

Solution:

$$p = \frac{k \cot 2 \alpha}{\sqrt{\csc e^2 \alpha + \sec^2 \alpha}}$$

$$\Rightarrow q = \frac{k \sin 2 \alpha}{\sqrt{\sin^2 \alpha + \cos^2 \alpha}}$$

$$\Rightarrow p = \frac{k\left(\frac{\cos 2 \alpha}{\sin 2 \alpha}\right)}{\sqrt{\frac{\sin^2 \alpha + \cos^2 \alpha}{\sin^2 \alpha \cos^2 \alpha}}} = \frac{k \cos 2 \alpha}{\sin 2 \alpha}$$

$$\Rightarrow p = \left(\frac{k}{2}\right) \cos 2 \alpha$$

$$\Rightarrow q = k \sin 2 \alpha$$

$$\Rightarrow \cos 2 \alpha = (2p / k)$$

$$\Rightarrow \sin^2 2 \alpha + \cos^2 2 \alpha = 1$$

$$\Rightarrow \frac{4p^2}{k^2} + \frac{q^2}{k^2} = 1$$

$$\Rightarrow 4p^2 + q^2 = k^2$$

Question78

Let A(1, 0), B(6, 2) and C $\left(\frac{3}{2}, 6\right)$ be the vertices of a triangle ABC. If P is

a point inside the triangle ABC such that the triangles APC, APB and BPC have equal areas, then the length of the line segment PQ, where Q

is the point $\left(-\frac{7}{6}, -\frac{1}{3}\right)$, is _____. [NA Jan. 7, 2020 (I)]

Answer: 5

Solution:

Solution: P will be centroid of $\triangle ABC$ P $\left(\frac{17}{6}, \frac{8}{3}\right) \Rightarrow PQ = \sqrt{(4)^2 + (3)^2} = 5$

Question79

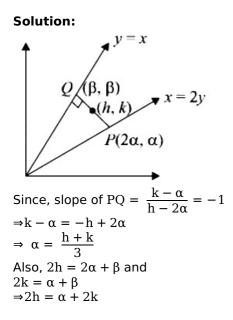
The locus of the mid-points of the perpendiculars drawn from points on the line, x = 2y to the line x = y is: [Jan. 7, 2020 (II)]

Options:

A. 2x - 3y = 0

- B. 5x 7y = 0
- C. 3x 2y = 0
- D. 7x 5y = 0

Answer: B



```
\begin{aligned} \Rightarrow & \alpha = 2h - 2k\\ \text{From (i) and (ii), we have}\\ & \frac{h+k}{3} = 2(h-k)\\ \text{So, locus is } 6x - 6y = x + y\\ \Rightarrow & 5x = 7y \Rightarrow 5x - 7y = 0 \end{aligned}
```

Question80

Let C be the centroid of the triangle with vertices (3,-1) (1,3) and (2,4). Let P be the point of intersection of the lines x + 3y - 1 = 0 and 3x - y + 1 = 0. Then the line passing through the points C and P also passes through the point: [Jan. 9, 2020 (I)]

Options:

A. (-9,-6)

B. (9,7)

C. (7,6)

D. (-9,-7)

Answer: A

Solution:

Solution: Coordinates of centroides $C = \left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$ $= \left(\frac{3 + 1 + 2}{3}, \frac{-1 + 3 + 4}{3}\right) = (2, 2)$ The given equation of lines are $x + 3y - 1 = 0 \dots$ (i) $3x - y + 1 = 0 \dots$ (ii) Then, from (i) and (ii) point of intersection $P\left(-\frac{1}{5}, \frac{2}{5}\right)$ equation of line DP 8x - 11y + 6 = 0

Question81

If a \triangle ABC has vertices A(-1, 7), B(-7, 1) and C(5, -5), then its orthocentre has coordinates: [Sep. 03, 2020 (II)]

Options:

A.
$$\left(-\frac{3}{5}, \frac{3}{5}\right)$$

B. (-3,3)

C.
$$\left(\frac{3}{5}, -\frac{3}{5}\right)$$

D. (3,-3)

Answer: B

Solution:

Solution:

A(-1, 7) P B(-7, 1) B(-7, 1) B(-7, 1) F(-7, 1) F(-7, 1) B(-7, 1) F(-7, 1) F(-7,

Question82

A triangle ABC lying in the first quadrant has two vertices as A(1, 2) and B(3, 1). If \angle BAC = 90°, andar (\triangle ABC) = $5\sqrt{5}$ sq. units, then the abscissa of the vertex C is: [Sep. 04, 2020 (I)]

Options:

A. $1 + \sqrt{5}$

B. 1 + $2\sqrt{5}$

C. 2 + $\sqrt{5}$

D. $2\sqrt{5} - 1\dot{m}$

Answer: B

Solution:

Let $\triangle ABC$ be in the first quadrant Slope of line $AB = -\frac{1}{2}$ Slope of line AC = 2Length of $AB = \sqrt{5}$ Y f(I,2) B(3,1) IIt is given that ar $(\triangle ABC) = 5\sqrt{5}$ $\therefore \frac{1}{2}AB \cdot AC = 5\sqrt{5} \Rightarrow AC = 10$ \therefore Coordinate of vertex $C = (1 + 10\cos\theta, 2 + 10\sin\theta)$ $\because \tan\theta = 2 \Rightarrow \cos\theta = \frac{1}{\sqrt{5}}, \sin\theta = \frac{2}{\sqrt{5}}$ \therefore Coordinate of $C = (1 + 2\sqrt{5}, 2 + 4\sqrt{5})$ \therefore Abscissa of vertex C is $1 + 2\sqrt{5}$.

Question83

If the perpendicular bisector of the line segment joining the points P(1, 4) and Q(k, 3) has y -intercept equal to -4 then a value of k is : [Sep. 04, 2020 (II)]

Options:

A. -2

B. -4

C. √14

D. √15

Answer: B

Solution:

Solution:

Mid point of line segment PQ be $\left(\frac{k+1}{2}, \frac{7}{2}\right)$. \therefore Slope of perpendicular line passing through (0,-4) and $\left(\frac{k+1}{2}, \frac{7}{2}\right) = \frac{\frac{7}{2}+4}{\frac{k+1}{2}-0} = \frac{15}{k+1}$ Slope of PQ = $\frac{4-3}{1-k} = \frac{1}{1-k}$ $\therefore \frac{15}{1+k} \times \frac{1}{1-k} = -1$ $1-k^2 = -15 \Rightarrow k = \pm 4$

If the line, 2x - y + 3 = 0 is at a distance $\frac{1}{\sqrt{5}}$ and $\frac{2}{\sqrt{5}}$ from the lines $4x - 2y + \alpha = 0$ and $6x - 3y + \beta = 0$, respectively, then the sum of all possible value of α and β is _____. [NA Sep. 05, 2020 (I)]

Answer: 30

Solution:

$$\begin{split} & L_1 : 2x - y + 3 = 0 \\ & L_1 : 4x - 2y + \alpha = 0 \Rightarrow 2x - y + \frac{\alpha}{2} = 0 \\ & L_1 : 6x - 3y + \beta = 0 \Rightarrow 2x - y + \frac{\beta}{3} = 0 \\ & \text{Distance between } L_1 \text{ and } L_2 \\ & \left| \frac{\alpha - 6}{2\sqrt{5}} \right| = \frac{1}{\sqrt{5}} \Rightarrow \left| \alpha - 6 \right| = 2 \\ & \Rightarrow \alpha = 4, 8 \\ & \text{Distance between } L_1 \text{ and } L_3 : \\ & \left| \frac{\beta - 9}{3\sqrt{5}} \right| = \frac{2}{\sqrt{5}} \Rightarrow \left| \beta - 9 \right| = 6 \\ & \Rightarrow \beta = 15, 3 \\ & \text{Sum of all values} = 4 + 8 + 15 + 3 = 30 \end{split}$$

Question85

Let $f : R \rightarrow R$ be defined as

$$\mathbf{f}(\mathbf{x}) = \begin{bmatrix} x^5 \sin\left(\frac{1}{x}\right) + 5x^2 & x < 0 \\ 0 & x = 0 \\ x^5 \cos\left(\frac{1}{x}\right) + \lambda x^2 & x > 0. \end{bmatrix}$$

The value of lambda for which f " (0) exists, is _____. [NA Sep. 06, 2020 (I)]

Answer: 5

$$f'(x) = \begin{cases} 5x^{4} \cdot \sin\left(\frac{1}{x}\right) - x^{3}\cos\left(\frac{1}{x}\right) + 10x & x < 0\\ 0 & x = 0\\ 5x^{4}\cos\left(\frac{1}{x}\right) + x^{3}\sin\left(\frac{1}{x}\right) + 2\lambda x & x > 0. \end{cases}$$

$$f''(x) = \begin{cases} (20x^{3} - x)\sin\left(\frac{1}{x}\right) - 8x^{2}\cos\left(\frac{1}{x}\right) + 10 & x < 0\\ 0 & x = 0\\ (20x^{3} - x)\cos\left(\frac{1}{x}\right) + 8x^{2}\sin\left(\frac{1}{x}\right) + 2\lambda & x > 0. \end{cases}$$
Now, $f''(0^{+}) = f''(0^{-}) \Rightarrow 2\lambda = 10 \Rightarrow \lambda = 5$

Let L denote the line in the xy -plane with x and y intercepts as 3 and 1 respectively. Then the image of the point (-1,-4) in this line is: [Sep. 06, 2020 (II)]

Options:

- A. $\left(\frac{11}{5}, \frac{28}{5}\right)$ B. $\left(\frac{29}{5}, \frac{8}{5}\right)$
- C. $\left(\frac{8}{5}, \frac{29}{5}\right)$
- D. $\left(\frac{29}{5}, \frac{11}{5}\right)$

Answer: A

Solution:

Solution:

The line in xy -plane is, $\frac{x}{3} + y = 1 \Rightarrow x + 3y - 3 = 0$ Let image of the point (-1,-4) be (α , β), then $\frac{\alpha + 1}{1} = \frac{\beta + y}{3} = -\frac{2(-1 - 12 - 3)}{10}$ $\Rightarrow \alpha + 1 = \frac{\beta + 4}{3} = \frac{16}{5}$ $\Rightarrow \alpha = \frac{11}{5}, \beta = \frac{28}{5}$

Question87

Consider the set of all lines px + qy + r = 0 such that 3p + 2q + 4r = 0. Which one of the following statements is true? [Jan. 9, 2019 (I)]

Options:

- A. The lines are concurrent at the point $\left(\frac{3}{4}, \frac{1}{2}\right)$.
- B. Each line passes through the origin.
- C. The lines are all parallel.
- D. The lines are not concurrent.

Answer: A

Solution:

```
Solution:

The given equations of the set of all lines

px + qy + r = 0 \dots (i)

and given condition is :

3p + 2q + 4r = 0

\Rightarrow \frac{3}{4}p + \frac{2}{4}q + r = 0 \dots (ii)

From (i) & (ii) we get :

\therefore x = \frac{3}{4}, y = \frac{1}{2}

Hence the set of lines are concurrent and passing through

the fixed point

\left(\frac{3}{4}, \frac{1}{2}\right)
```

Question88

Let the equations of two sides of a triangle be 3x - 2y + 6 = 0 and 4x + 5y - 20 = 0. If the orthocentre of this triangle is at (1, 1), then the equation of its third side is: [Jan. 09, 2019 (II)]

Options:

- A. 122y 26x 1675 = 0
- B. 122y + 26x + 1675 = 0
- C. 26x + 61y + 1675 = 0
- D. 26x 122y 1675 = 0

Answer: D

Solution:

 $A x_2, \frac{20 \ 4x_2}{5}$ $4x + 5y \quad 20 = 0$ (H(1,1) C R 3x2y + 6 = 0 $\left(x_{1}, \frac{3x_{1}+6}{2}\right)$ Since, AH is perpendicular to BC Hence, $m_{AH} \cdot m_{BC} = -1$ $\left(\begin{array}{c} \frac{20-4x_2}{5} - 1\\ \hline x_2 - 1 \end{array}\right) \times \frac{3}{2} = -1$ $\frac{15 - 4x_2}{5(x_2 - 1)} = -\frac{2}{3}$ $45 - 12x_2 = -10x_2 + 10$ $2x_2 = 35 \Rightarrow x_2 = \frac{35}{2}$ $\Rightarrow A\left(\frac{35}{2}, -10\right)$ Since, BH is perpendicular to CA. Hence, $m_{_{BH}}$ × $m_{_{CA}}$ = -1 $\left(\begin{array}{c}\frac{3x_1}{2}+3-1\\\hline x_1-1\end{array}\right)\left(-\frac{4}{5}\right) = -1$ $\frac{(3x_1 + 4)}{2(x_1 - 1)} \times 4 = 5$ $\Rightarrow 6x_1 + 8 = 5x_1 - 5 \Rightarrow x_1 = -13 \Rightarrow \left(-13, \frac{-33}{2}\right)$ \Rightarrow Equation of line AB is $y + 10 = \left(\frac{-\frac{33}{2} + 10}{-13 - 35}\right) \left(x - \frac{35}{2}\right)$ $\Rightarrow -61y - 610 = -13x + \frac{455}{2}$ $\Rightarrow -122y - 1220 = -26x + 455$ $\Rightarrow 26x - 122y - 1675 = 0$

Question89

A point P moves on the line 2x - 3y + 4 = 0. If Q(1, 4) and R(3, -2) are fixed points, then the locus of the centroid of $\triangle PQR$ is a line: [Jan. 10, 2019 (I)]

Options:

A. with slope $\frac{3}{2}$

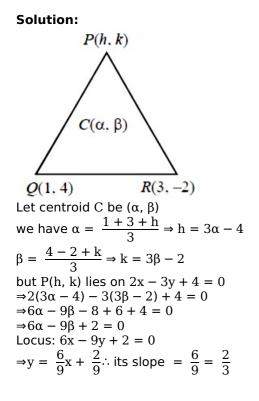
B. parallel to x -axis

C. with slope $\frac{2}{3}$

D. parallel to y -axis

Answer: C

Solution:



Question90

If the line 3x + 4y - 24 = 0 intersects the x -axis at the point A and the yaxis at the point B, then the incentre of the triangle OAB, where O is the origin, is: [Jan. 10, 2019 (I)]

Options:

A. (3,4)

B. (2,2)

C. (4,3)

D. (4,4)

Answer: B

Solution:

Solution:

Equation of the line is: 3x + 4y = 24 or $\frac{x}{8} + \frac{y}{6} = 1$ \therefore coordinates of A, B & O are (8, 0), (0, 6) & (0, 0) respectively. $\Rightarrow OA = 8$, OB = 6 & AB = 10 \therefore Incentre of $\triangle OAB$ is given as: $I \equiv \left(\frac{8 \times 0 + 6 \times 8 + 10 \times 0}{8 + 6 + 10}, \frac{8 \times 6 + 6 \times 0 + 10 \times 0}{8 + 6 + 10}\right) \equiv (2, 2).$

Two vertices of a triangle are (0,2) and (4,3) . If its orthocentre is at the origin, then its third vertex lies in which quadrant? [Jan. 10, 2019 (II)]

Options:

A. third

B. second

C. first

D. fourth

Answer: B

Solution:

Solution:

Since, $m_{QR} \times m_{PH} = -1$ $\Rightarrow m_{QR} = -\frac{1}{m_{PH}}$ $\Rightarrow m_{QR} = \frac{y-3}{x-4} = 0$ $\Rightarrow y = 3$ $m_{PQ} \times m_{RH} = -1$ $\Rightarrow \frac{1}{4} \times \frac{y}{x} = -1$ $\Rightarrow y = -4x$ $\Rightarrow x = -\frac{3}{4}$ Vertex R is $\left(\frac{-3}{4}, 3\right)$ Hence, vertex R lies in second quadrant.

Question92

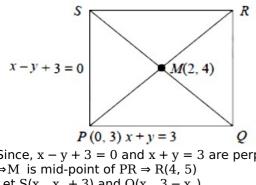
Two sides of a parallelogram are along the lines, x + y = 3 and x - y + 3 = 0. If its diagonals intersect at (2, 4), then one of its vertex is: [Jan. 10, 2019 (II)]

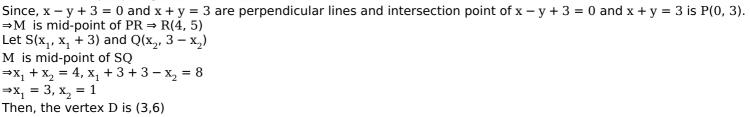
Options:

- A. (3,5)
- B. (2,1)
- C. (2,6)
- D. (3,6)

Answer: D

Solution:





Question93

If in a parallelogram ABDC, the coordinates of A, B and C are respectively (1,2),(3,4) and (2, 5), then the equation of the diagonal AD is:

[Jan. 11, 2019 (II)]

Options:

A. 5x - 3y + 1 = 0

B. 5x + 3y - 11 = 0

C. 3x - 5y + 7 = 0

D. 3x + 5y - 13 = 0

Answer: A

Solution:

Solution:

Since, in parallelogram mid points of both diagonals considers. \therefore mid-point of AD = mid-point of BC

C (2,5)
A
B
(1,2)

$$\left(\frac{x_1+1}{2}, \frac{y_1+2}{2}\right) = \left(\frac{3+2}{2}, \frac{4+5}{2}\right)$$

 $\therefore (x_1, y_1) = (4, 7)$
Then, equation of AD is,
 $y - 7 = \frac{2-7}{1-4}(x-4)$
 $y - 7 = \frac{5}{3}(x-4)$
 $3y - 21 = 5x - 20$
 $5x - 3y + 1 = 0$

If a straight line passing through the point P(-3, 4) is such that its intercepted portion between the coordinate axes is bisected at P, then its equation is: [Jan. 12, 2019 (II)]

Options:

A. 3x - 4y + 25 = 0

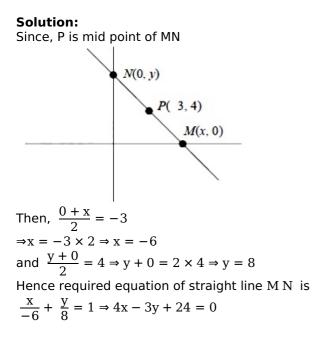
B. 4x - 3y + 24 = 0

C. x - y + 7 = 0

D. 4x + 3y = 0

Answer: B

Solution:



Question95

If the straight line, 2x - 3y + 17 = 0 is perpendicular to the line passing through the points (7,17) and (15, β), then β equals: [Jan. 12, 2019 (I)]

Options:

A. $\frac{35}{3}$ B. -5

C. $-\frac{35}{3}$

Answer: D

Solution:

Solution: \because Equation of straight line can be rewritten as, $y = \frac{2}{3}x + \frac{17}{3}$ \therefore Slope of straight line $= \frac{2}{3}$ Slope of line passing through the points (7,17) and (15, β) $= \frac{\beta - 17}{15 - 7} = \frac{\beta - 17}{8}$ Since, lines are perpendicular to each other. Hence, $m_1m_2 = -1$ $\Rightarrow \left(\frac{2}{3}\right) \left(\frac{\beta - 17}{8}\right) = -1 \Rightarrow \beta = 5$

Question96

Let O(0, 0) and A(0, 1) be two fixed points. Then the locus of a point P such that the perimeter of $\triangle AOP$ is 4, is : [April 8, 2019 (I)]

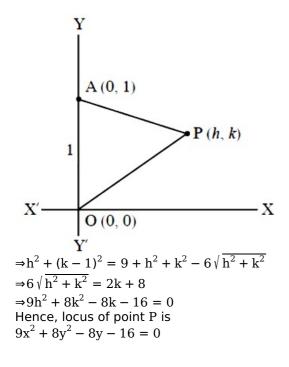
Options:

A. $8x^{2} - 9y^{2} + 9y = 18$ B. $9x^{2} - 8y^{2} + 8y = 16$ C. $9x^{2} + 8y^{2} - 8y = 16$ D. $8x^{2} + 9y^{2} - 9y = 18$

Answer: C

Solution:

Solution: Let point P(h, k) \therefore OA = 1 So, OP + AP = 3 $\Rightarrow \sqrt{h^2 + k^2} + \sqrt{h^2 + (k - 1)^2} = 3$



Slope of a line passing through P(2, 3) and intersecting the line x + y = 7 at a distance of 4 units from P, is: [April 9, 2019 (I)]

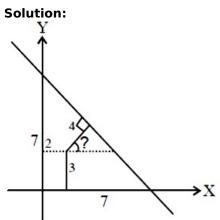
Options:

A. $\frac{1 - \sqrt{5}}{1 + \sqrt{5}}$

B.
$$\frac{1-\sqrt{7}}{1+\sqrt{7}}$$

- C. $\frac{\sqrt{7}-1}{\sqrt{7}+1}$
- D. $\frac{\sqrt{5}-1}{\sqrt{5}+1}$

Answer: B



Since point at 4 units from P(2, 3) will be A $(4\cos\theta + 2, 4\sin\theta + 3)$ and this point will satisfy the equation of line x + y = 7

 $\Rightarrow \cos \theta + \sin \theta = \frac{1}{2}$ On squaring $\Rightarrow \sin 2 \theta - \frac{3}{4} \Rightarrow \frac{2 \tan \theta}{1 + \tan^2 \theta} = -\frac{3}{4}$ $\Rightarrow 3 \tan^2 \theta + 8 \tan \theta + 3 = 0$ $\Rightarrow \tan \theta = \frac{-8 \pm 2\sqrt{7}}{6} \quad (\text{ignoring -ve sign})$ $\Rightarrow \tan \theta = \frac{-8 \pm 2\sqrt{7}}{6} = \frac{1 - \sqrt{7}}{1 + \sqrt{7}}$

Question98

A point on the straight line, 3x + 5y = 15 which is equidistant from the coordinate axes will lie only in : [April 8, 2019 (I)]

Options:

A. 4th quadrant

B. 1st quadrant

C. 1 $^{\rm st}~$ and 2 $^{\rm nd}~~$ quadrants

D. 1 $^{\rm st}$, 2 $^{\rm nd}~$ and 4 $^{\rm th}~~$ quadrants

Answer: C

Solution:

Solution: A point which is equidistant from both the axes lies on either y = x and y = -x. Since, point lies on the line 3x + 5y = 15Then the required point 3x + 5y = 15 x + y = 0 $x = -\frac{15}{2}$ $y = \frac{15}{2} \Rightarrow (x, y) = \left(-\frac{15}{2}, \frac{15}{2}\right) \{2^{nd} \text{ quadrant }\}$ 3x + 5y = 15or $\frac{x - y = 0}{15}$ $x = \frac{15}{8}$ $y = \frac{15}{8} \Rightarrow (x, y) = \left(\frac{15}{8}, \frac{15}{8}\right) \{1^{\text{st}} \text{ quadrant }\}$ Hence, the required point lies in 1^{st} and 2^{nd} quadrant.

Question99

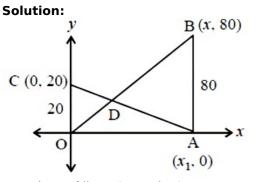
Two vertical poles of heights, 20m and 80m stand apart on a horizontal plane. The height (in meters) of the point of intersection of the lines joining the top of each pole to the foot of the other, from this horizontal plane is:

[April 08, 2019 (II)]

Options:

- A. 15
- B. 18
- C. 12
- D. 16
- Answer: D

Solution:



Equations of lines OB and AC are respectively $y = \frac{80}{x_1}x \dots (i)$ $\frac{x}{x_1} + \frac{y}{20} = 1 \dots (ii)$ \because equations (i) and (ii) intersect each other \therefore substitute the value of x from equation (i) to equation (ii), we get $\frac{y}{80} + \frac{y}{20} = 1$ $\Rightarrow y + 4y = 80 \Rightarrow y = 16m$ Hence, height of intersection point is 16m.

Question100

Suppose that the points (h, k), (1, 2) and (-3,4) lie on the line L_1 . If a line L_2 passing through the points (h, k) and (4,3) is perpendicular on L_1 , then $\frac{k}{h}$ equals: [April 08, 2019 (II)]

Options:

A. $\frac{1}{3}$

B. 0

C. 3

D. $-\frac{1}{7}$

Answer: A

Solution:

Solution:

 $\begin{array}{c|c} \because (h, k), (1, 2) \text{ and } (-3, 4) \text{ are collinear} \\ \hline \\ h & k & 1 \\ 1 & 2 & 1 \\ -3 & 4 & 1 \end{array} = 0 \Rightarrow -2h - 4k + 10 = 0 \\ \Rightarrow h + 2k = 5 \dots (i) \\ \text{Now, } m_{L_1} = \frac{4 - 2}{-3 - 1} = -\frac{1}{2} \Rightarrow m_{L_2} = 2 \ [\because L_1 \bot L_2] \\ \text{By the given points } (h, k) \text{ and } (4, 3) , \\ m_{L_2} = \frac{k - 3}{h - 4} \Rightarrow \frac{k - 3}{h - 4} = 2 \Rightarrow k - 3 = 2h - 8 \\ 2h - k = 5 \dots (ii) \\ \text{From (i) and (ii)} \\ h = 3, k = 1 \Rightarrow \frac{k}{h} = \frac{1}{3} \end{array}$

Question101

If the two lines x + (a - 1)y = 1 and $2x + a^2y = 1(a \in R - \{0, 1\})$ are perpendicular, then the distance of their point of intersection from the origin is: [April 09, 2019 (II)]

Options:

A. $\sqrt{\frac{2}{5}}$

B. $\frac{2}{5}$

- C. $\frac{2}{\sqrt{5}}$
- D. $\frac{\sqrt{2}}{5}$

Answer: A

Solution:

Solution: \therefore two lines are perpendicular $\Rightarrow m_1m_2 = -1$ $\Rightarrow \left(\frac{-1}{a-1}\right) \left(\frac{-2}{a^2}\right) = -1$ $\Rightarrow 2 = a^2(1-a) \Rightarrow a^3 - a^2 + 2 = 0$ $\Rightarrow (a+1)(a^2+2a+2) = 0 \Rightarrow a = -1$ Hence equations of lines are x - 2y = 1 and 2x + y = 1 \therefore intersection point is $\left(\frac{3}{5}, \frac{-1}{5}\right)$ Now, distance from origin $= \sqrt{\frac{9}{25} + \frac{1}{25}} = \sqrt{\frac{10}{25}} = \sqrt{\frac{2}{5}}$

A rectangle is inscribed in a circle with a diameter lying along the line 3y = x + 7. If the two adjacent vertices of the rectangle are (-8,5) and (6, 5), then the area of the rectangle (in sq. units) is: [April 09, 2019 (II)]

Options:

A. 84

B. 98

C. 72

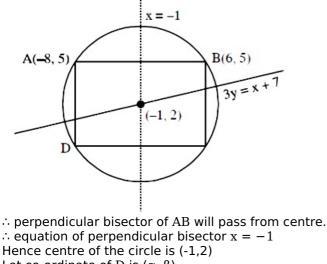
D. 56

Answer: A

Solution:

Solution:

Given situation



Let co-ordinate of D is (α, β) $\Rightarrow \frac{\alpha+6}{2} = -1$ and $\frac{\beta+5}{2} = 2$ $\Rightarrow \alpha = -8$ and $\beta = -1, \therefore D \equiv (-8, -1)$ |AD| = 6 and |AB| = 14Area $= 6 \times 14 = 84$

Question103

Lines are drawn parallel to the line 4x - 3y + 2 = 0, at a distance $\frac{3}{5}$ from the origin. Then which one of the following points lies on any of these lines? [April 10, 2019 (II)]

Options:

A. $\left(-\frac{1}{4}, \frac{2}{3}\right)$

B. $\left(\frac{1}{4}, -\frac{1}{3}\right)$ C. $\left(\frac{1}{4}, \frac{1}{3}\right)$ D. $\left(-\frac{1}{4}, -\frac{2}{3}\right)$

Answer: A

Solution:

Solution: Let straight line be $4x - 3y + \alpha = 0$ \therefore distance from origin $= \frac{3}{5}$ $\therefore \frac{3}{5} = \left| \frac{\alpha}{5} \right| \Rightarrow \alpha = \pm 3$ Hence, line is 4x - 3y + 3 = 0 or 4x - 3y - 3 = 0Clearly $\left(-\frac{1}{4}, \frac{2}{3} \right)$ satisfies 4x - 3y + 3 = 0

Question104

A triangle has a vertex at (1,2) and the mid points of the two sides through it are (-1,1) and (2,3) . Then the centroid of this triangle is: [April 12, 2019 (II)]

Options:

- A. $(1, \frac{7}{3})$
- B. $\left(\frac{1}{3}, 2\right)$
- C. $\left(\frac{1}{3}, 1\right)$
- D. $\left(\frac{1}{3}, \frac{5}{3}\right)$

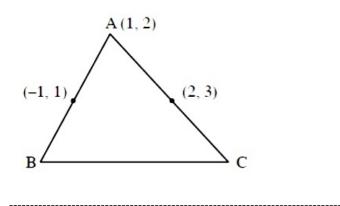
Answer: B

Solution:

Solution:

From the mid-point formula co-ordinates of vertex B and C are B(-3, 0) and C(3, 4)Now, centroid of the triangle

 $\mathbf{G} \equiv \left(\begin{array}{c} \frac{3-3+1}{3}, \\ \frac{0+4+2}{3} \end{array} \right) \Rightarrow \mathbf{G} \equiv \left(\begin{array}{c} \frac{1}{3}, \\ 2 \end{array} \right)$



A straight line L at a distance of 4 units from the origin makes positive intercepts on the coordinate axes and the perpendicular from the origin to this line makes an angle of 60° with the line x + y = 0. Then an equation of the line Lis: [April 12, 2019 (II)]

Options:

A.
$$x + \sqrt{3}y = 8$$

B. $(\sqrt{3} + 1)x + (\sqrt{3} - 1)y = 8\sqrt{2}$

$$C.\sqrt{3}x + y = 8$$

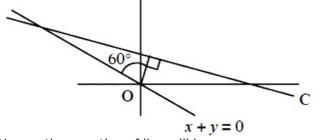
D. None of these

Answer: B

Solution:

Solution:

- \because perpendicular makes an angle of 60° with the line x+y=0
- \therefore the perpendicular makes an angle of 15° or 75° with x -axis



Hence, the equation of line will be $x \cos 75^{\circ} + y \sin 75^{\circ} = 4$ or $x \cos 15^{\circ} + y \sin 15^{\circ} = 4$ $(\sqrt{3} - 1)x + (\sqrt{3} + 1)y = 8\sqrt{2}$ or $(\sqrt{3} + 1)x + (\sqrt{3} - 1)y = 8\sqrt{2}$

Question106

The equation $y = sin x sin(x + 2) - sin^2(x + 1)$ represents a straight line lying in :

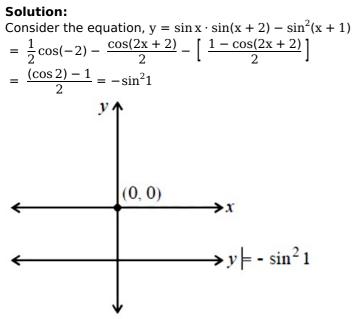
[April 12, 2019 (I)]

Options:

- A. second and third quadrants only
- B. first, second and fourth quadrant
- C. first, third and fourth quadrants
- D. third and fourth quadrants only

Answer: D

Solution:



By the graph y lies in III and IV quadrant.

Question107

Let the orthocentre and centroid of a triangle be A(-3, 5) and B(3, 3) respectively. If C is the circumcentre of this triangle, then the radius of the circle having line segment AC as diameter, is : [2018]

Options:

A. 2√10

B. $3\sqrt{\frac{5}{2}}$

C. $\frac{3\sqrt{5}}{2}$

D. √10

Answer: B

Solution:

Solution: Since Orthocentre of the triangle is A(-3, 5) and centriod of the triangle is B(3, 3), then $AB = \sqrt{40} = 2\sqrt{10}$ A B C Centroid divides orthocentre and circumcentre of the triangle in ratio 2: 1 $\therefore AB : BC = 2 : 1$ N ow, $AB = \frac{2}{3}AC$ $\Rightarrow AC = \frac{3}{2}AB = \frac{3}{2}(2\sqrt{10}) \Rightarrow AC = 3\sqrt{10}$ \therefore Radius of circle with AC as diametre $= \frac{AC}{2} = \frac{3}{2}\sqrt{10} = 3\sqrt{\frac{5}{2}}$

Question108

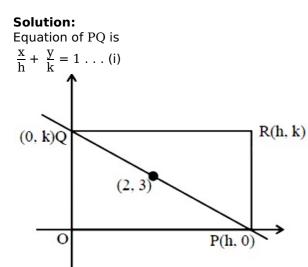
A straight line through a fixed point (2,3) intersects the coordinate axes at distinct points P and Q. If O is the origin and the rectangle OPRQ is completed, then the locus of R is : [2018]

Options:

A. 2x + 3y = xyB. 3x + 2y = xyC. 3x + 2y = 6xyD. 3x + 2y = 6

Answer: B

Solution:



Since, (i) passes through the fixed point (2,3) Then, $\frac{2}{h} + \frac{3}{k} = 1$ Then, the locus of R is $\frac{2}{x} + \frac{3}{y} = 1$ or 3x + 2y = xy.

Question109

In a triangle ABC, coordianates of A are (1,2) and the equations of the medians through B and C are x + y = 5 and x = 4 respectively. Then area of \triangle ABC (in sq. units) is [Online April 15, 2018]

Options:

A. 5

B. 9

C. 12

D. 4

Answer: B

Solution:

Solution:

Median through C is x = 4So the x coordinate of C is 4 . let $C \equiv (4, y)$, then the midpoint of A(1, 2) and C(4, y) is D which lies on the median through B.

 $A = \int_{B} \int_{C} \int_{C}$

Question110

The foot of the perpendicular drawn from the origin, on the line, $3x + y = \lambda(\lambda \neq 0)$ is P. If the line meets x -axis at A and y -axis at B, then the ratio BP : PA is [Online April 15, 2018]

Options:

A. 9: 1

- B. 1: 3
- C. 1: 9

D. 3: 1

Answer: A

Solution:

Solution:

Let (x, y) be foot of perpendicular drawn to the point (x₁, y₁) on the line ax+ by + c = 0 Relation : $\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{-(ax_1 + by_1 + cz_1)}{a^2 + b^2}$ Here (x₁, y₁) = (o, 0) given line is: $3x + y - \lambda = 0$ $\frac{x - 0}{3} = \frac{y - 0}{1} = \frac{-((3 \times 0) + (1 \times 0) - \lambda)}{3^2 + 1^2}$ x = $\frac{3\lambda}{10}$ and y = $\frac{\lambda}{10}$ Hence foot of perpendicular P = $\left(\frac{3\lambda}{10}, \frac{\lambda}{10}\right)$ Line meets X -axis at A = $\left(\frac{\lambda}{3}, 0\right)$ and meets Y -axis at B = (0, λ) BP = $\sqrt{\left(\frac{3\lambda}{10}\right)^2 + \left(\frac{\lambda}{10} - \lambda\right)^2}$ $\Rightarrow BP = \sqrt{\frac{9\lambda^2}{100} + \frac{81\lambda^2}{100}}$ $\therefore BP = \sqrt{\frac{90\lambda^2}{100}}$ AP = $\sqrt{\left(\frac{\lambda}{3} - \frac{3\lambda}{10}\right)^2 + \left(0 - \frac{\lambda}{10}\right)^2}$ $\Rightarrow AP = \sqrt{\frac{\lambda^2}{900} + \frac{\lambda^2}{100}}$ $\therefore AP = \sqrt{\frac{10\lambda^2}{900}}$

Question111

The sides of a rhombus ABCD are parallel to the lines, x - y + 2 = 0 and 7x - y + 3 = 0. If the diagonals of the rhombus intersect at P(1, 2) and the vertex A (different from the origin) is on the y -axis, then the ordinate of A is [Online April 15, 2018]

Options:

A. 2 B. $\frac{7}{4}$

o 7

C. $\frac{7}{2}$

Answer: D

Solution:

Solution:

Let the coordinate A be (0, c) Equations of the given lines are x - y + 2 = 0 and 7x - y + 3 = 0We know that the diagonals of the rhombus will be parallel to the angle bisectors of the two given lines; y = x + 2 and y = 7x + 3 \therefore equation of angle bisectors is given as: $\frac{x - y + 2}{\sqrt{2}} = \pm \frac{7x - y + 3}{5\sqrt{2}}$ $5x - 5y + 10 = \pm(7x - y + 3)$ \therefore Parallel equations of the diagonals are 2x + 4y - 7 = 0 and 12x - 6y + 13 = 0 \therefore slopes of diagonals are $\frac{-1}{2}$ and 2. Now, slope of the diagonal from A(0, c) and passing through P(1, 2) is (2 - c) $\therefore 2 - c = \frac{-1}{2} \Rightarrow c = \frac{5}{2}$ \therefore ordinate of A is $\frac{5}{2}$

Question112

A square, of each side 2 , lies above the x -axis and has one vertex at the origin. If one of the sides passing through the origin makes an angle 30° with the positive direction of the x -axis, then the sum of the x - coordinates of the vertices of the square is : [Online April 9, 2017]

Options:

A. $2\sqrt{3} - 1$

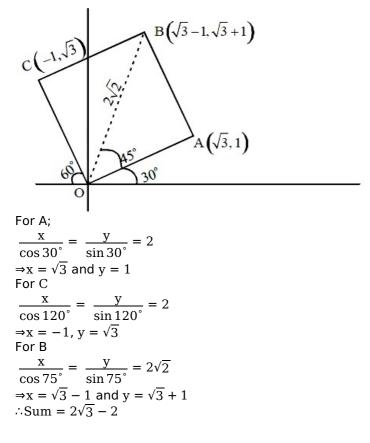
B. $2\sqrt{3} - 2$

C. $\sqrt{3} - 2$

D. $\sqrt{3} - 1$

Answer: B

Solution:



Question113

A ray of light is incident along a line which meets another line, 7x - y + 1 = 0, at the point (0,1). The ray is then reflected from this point along the line, y + 2x = 1. Then the equation of the line of incidence of the ray of light is : [Online April 10, 2016]

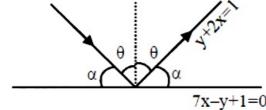
Options:

- A. 41x 25y + 25 = 0
- B. 41x + 25y 25 = 0
- C. 41x 38y + 38 = 0
- D. 41x + 38y 38 = 0

Answer: C

Solution:

Solution: Let slope of incident ray be m ∴ angle of incidence = angle of reflection



$$\left| \begin{array}{c} \frac{m-7}{1+7m} \right| = \left| \begin{array}{c} \frac{-2-7}{1-14} \right| = \frac{9}{13} \\ \Rightarrow \frac{m-7}{1+7m} = \frac{9}{13} \text{ or } \frac{m-7}{1+7m} = -\frac{9}{13} \\ \Rightarrow 13m - 91 = 9 + 63m \text{ or } 13m - 91 = -9 - 63m \\ \Rightarrow 50m = -100 \text{ or } 76m = 82 \\ \Rightarrow m = -\frac{1}{2} \text{ or } m = \frac{41}{38} \\ \Rightarrow y - 1 = -\frac{1}{2}(x-0) \text{ or } y - 1 = \frac{41}{38}(x-0) \\ \text{ i.e } x + 2y - 2 = 0 \text{ or } 38y - 38 - 41x = 0 \\ \Rightarrow 41x - 38y + 38 = 0 \end{array}$$

Question114

Two sides of a rhombus are along the lines, x - y + 1 = 0 and 7x - y - 5 = 0. If its diagonals intersect at (-1, -2), then which one of the following is a vertex of this rhombus? [2016]

Options:

A.
$$\left(\frac{1}{3}, -\frac{8}{3}\right)$$

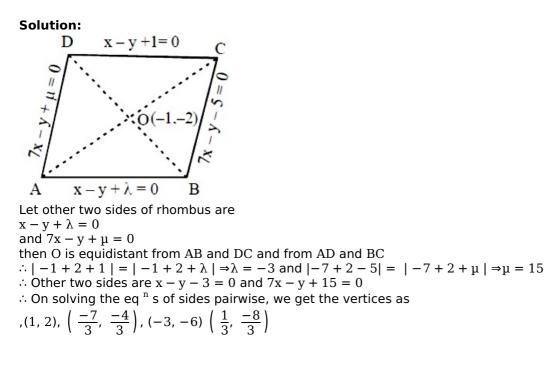
B. $\left(-\frac{10}{3}, -\frac{7}{3}\right)$

C. (-3,-9)

D. (-3,-8)

Answer: A

Solution:



Question115

If a variable line drawn through the intersection of the lines $\frac{x}{3} + \frac{y}{4} = 1$ and $\frac{x}{4} + \frac{y}{3} = 1$, meets the coordinate axes at A and B, (A \neq B), then the locus of the midpoint of AB is : [Online April 9, 2016]

Options:

A. 7xy = 6(x + y)B. $4(x + y)^2 - 28(x + y) + 49 = 0$ C. 6xy = 7(x + y)D. $14(x + y)^2 - 97(x + y) + 168 = 0$

Answer: A

Solution:

```
\begin{split} & \text{Solution:} \\ & L_1: 4x + 3y - 12 = 0 \\ & L_2: 3x + 4y - 12 = 0 \\ & L_1 + \lambda L_2 = 0 \\ & (4x + 3y - 12) + \lambda(3x + 4y - 12) = 0 \\ & x(4 + 3\lambda) + y(3 + 4\lambda) - 12(1 + \lambda) = 0 \\ & \text{Point A} \left( \frac{12(1 + \lambda)}{4 + 3\lambda}, 0 \right) \\ & \text{Point B} \left( 0, \frac{12(1 + \lambda)}{3 + 4\lambda} \right) \\ & \text{mid point } \Rightarrow h = \frac{6(1 + \lambda)}{4 + 3\lambda} \dots (i) \\ & k = \frac{6(1 + \lambda)}{3 + 4\lambda} \dots (ii) \\ & \text{Eliminate } \lambda \text{ from (i) and (ii), then } \\ & 6(h + k) = 7hk \\ & 6(x + y) = 7xy \end{split}
```

Question116

The point (2,1) is translated parallel to the line L : x - y = 4 by $2\sqrt{3}$ units. If the new points Q lies in the third quadrant, then the equation of the line passing through Q and perpendicular to L is : [Online April 9, 2016]

Options:

A. $x + y = 2 - \sqrt{6}$ B. $2x + 2y = 1 - \sqrt{6}$

C. x + y = $3 - 3\sqrt{6}$

D. x + y = $3 - 2\sqrt{6}$

Answer: D

Solution: x - y = 4To find equation of R slope of L = 0 is 1 \Rightarrow slope of QR = -1Let QR is y = mx + cy = -x + cx + y - c = 0distance of QR from (2,1) is $2\sqrt{3}$ $2\sqrt{3} = \frac{|2+1-c|}{|2+1-c|}$ $\sqrt{2}$ P(2.1) L = 00 $2\sqrt{3}$ x - y = 4 $2\sqrt{6} = |3 - c|$ $c - 3 = \pm 2\sqrt{6}c = 3 \pm 2\sqrt{6}$ Line can be $x + y = 3 \pm 2\sqrt{6}$ $x + y = 3 - 2\sqrt{6}$

Question117

A straight line through origin O meets the lines 3y = 10 - 4x and 8x + 6y + 5 = 0 at points A and B respectively. Then O divides the segment AB in the ratio : [Online April 10, 2016]

Options:

A. 2: 3

B. 1: 2

C. 4: 1

D. 3: 4

Answer: C

Solution:

```
Solution:
Length of \bot to 4x + 3y = 10 from origin (0,0)
P_1 = \frac{10}{5} = 2
Length of \bot to 8x + 6y + 5 = 0 from origin (0,0)
P_2 = \frac{5}{10} = \frac{1}{2}
\because Lines are parallel to each other \Rightarrow ratio will be 4: 1 or 1: 4
```

Question118

Let L be the line passing through the point P(1, 2) such that its intercepted segment between the co-ordinate axes is bisected at P. If L_1 is the line perpendicular to L and passing through the point (-2, 1), then the point of intersection of L and L_1 is : [Online April 10, 2015]

Options:

A. $\left(\frac{4}{5}, \frac{12}{5}\right)$ B. $\left(\frac{3}{5}, \frac{23}{10}\right)$ C. $\left(\frac{11}{20}, \frac{29}{10}\right)$

D. $\left(\frac{3}{10}, \frac{17}{5}\right)$

Answer: A

Solution:

Solution: Equation of line L $\frac{x}{2} + \frac{y}{4} = 1$ $2x + y = 4 \dots (i)$ (1, 2)For line $x - 2y = -4 \dots (ii)$

 $x - 2y = -4 \dots (II)$ solving equation (i) and (ii); we get point of intersection $\left(4 / 5, \frac{12}{5}\right)$

Question119

The points $(0, \frac{8}{3})$, (1, 3) and (82,30): [Online April 10, 2015]

Options:

A. form an acute angled triangle.

- B. form a right angled triangle.
- C. lie on a straight line.
- D. form an obtuse angled triangle.

Answer: C

Solution:

Solution: A $\left(0, \frac{8}{3}\right)$ B(1, 3)C(89, 30) Slope of AB = $\frac{1}{3}$ Slope of BC = $\frac{1}{3}$ So, lies on same line

Question120

A straight line L through the point (3,-2) is inclined at an angle of 60° to the line $\sqrt{3}x + y = 1$. If L also intersects the x -axis, then the equation of L is : [Online April 11, 2015]

Options:

- A. $v + \sqrt{3}x + 2 3\sqrt{3} = 0$
- B. $\sqrt{3}y + x 3 + 2\sqrt{3} = 0$
- C. $y \sqrt{3}x + 2 + 3\sqrt{3} = 0$
- D. $\sqrt{3}y x + 3 + 2\sqrt{3} = 0$

Answer: C

Solution:

Solution:

```
Given eqn of line is y + \sqrt{3}x - 1 = 0

\Rightarrow y = -\sqrt{3}x + 1

\Rightarrow (slope) m_2 = -\sqrt{3}

Let the other slope be m_1

\therefore \tan 60^\circ = \left| \frac{m_1 - (-\sqrt{3})}{1 + (-\sqrt{3}m_1)} \right|

\Rightarrow m_1 = 0, m_2 = \sqrt{3}

Since line L is passing through (3,-2)

\therefore y - (-2) = +\sqrt{3}(x - 3)

\Rightarrow y + 2 = \sqrt{3}(x - 3)

y - \sqrt{3}x + 2 + 3\sqrt{3} = 0
```

Question121

The circum centre of a triangle lies at the origin and its centroid is the mid point of the line segment joining the points $(a^2 + 1, a^2 + 1)$ and (2a, -2a), $a \neq 0$. Then for anya, the orthocentre of this triangle lies on

the line: [Online April 11, 2015]

Options:

A. y - 2ax = 0B. $y - (a^{2} + 1)x = 0$ C. y + x = 0D. $(a - 1)^{2}x - (a + 1)^{2}y = 0$

Answer: D

Solution:

Solution: Circumcentre = (0, 0)Centroid = $\left(\frac{(a+1)^2}{2}, \frac{(a-1)^2}{2}\right)$ We know the circumcentre (O), Centroid (G) and orthocentre (H) of a triangle lie on the line joining the O and G. Also, $\frac{HG}{GO} = \frac{2}{1}$ \Rightarrow Coordinate of orthocentre = $\frac{3(a+1)^2}{2}$, $\frac{3(a-1)^2}{2}$ Now, these coordinates satisfies eqn given in option (d) Hence, required eqn of line is $(a-1)^2x - (a+1)^2y = 0$

Question122

Given three points P, Q, R with P(5, 3) and R lies on the x-axis. If equation of RQ is x - 2y = 2 and PQ is parallel to the x -axis, then the centroid of \triangle PQR lies on the line: [Online April 9, 2014]

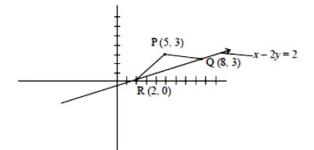
Options:

A. 2x + y - 9 = 0

- B. x 2y + 1 = 0
- C. 5x 2y = 0
- D. 2x 5y = 0

Answer: D

Solution:



Equation of RQ is x - 2y = 2... (i) at y = 0, x = 2[R(2, 0)]as PQ is parallel to x, y -coordinates of Q is also 3 Putting value of y in equation (i), we get Q(8, 3) Centroid of $\Delta PQR = \left(\frac{8+5+2}{3}, \frac{3+3}{3}\right) = (5, 2)$ Only (2x - 5y = 0) satisfy the given co-ordinates.

Question123

If a line intercepted between the coordinate axes is trisected at a point A(4, 3), which is nearer to x -axis, then its equation is: [Online April 12, 2014]

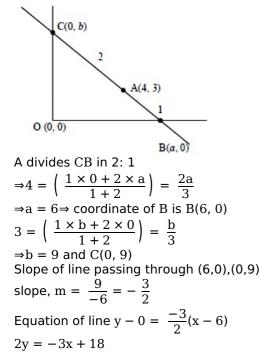
Options:

- A. 4x 3y = 7
- B. 3x + 2y = 18
- C. 3x + 8y = 36

D. x + 3y = 13

Answer: B

Solution:



Question124

Let a, b, c and d be non-zero numbers. If the point of intersection of the lines 4ax + 2ay + c = 0 and 5bx + 2by + d = 0 lies in the fourth quadrant and is equidistant from the two axes then [2014]

Options:

- A. 3bc 2ad = 0
- B. 3bc + 2ad = 0
- C. 2bc 3ad = 0
- D. 2bc + 3ad = 0

Answer: A

Solution:

Solution: Given lines are 4ax + 2ay + c = 05bx + 2by + d = 0The point of intersection will be $\frac{x}{2ad - 2bc} = \frac{-y}{4ad - 5bc} = \frac{1}{8ab - 10ab}$ \Rightarrow x = $\frac{2(ad - bc)}{c} = \frac{bc - ad}{c}$ $\Rightarrow x = \frac{-2ab}{-2ab} = \frac{-2ab}{ab}$ $\Rightarrow y = \frac{5bc - 4ad}{ab} = \frac{4ad - 5bc}{ab}$ -2ab 2ab \because Point of intersection is in fourth quadrant so x is positive and y is negative. Also distance from axes is same So x = -y(: distance from x -axis is -y as y is negative) $\frac{bc - ad}{bc - ad} = \frac{5bc - 4ad}{c} \Rightarrow 3bc - 2ad = 0$ 2ab ab

Question125

Let PS be the median of the triangle vertices P(2, 2), Q(6, -1) and R(7, 3). The equation of the line passing through (1,-1) and parallel to PS is: [2014]

Options:

A. 4x + 7y + 3 = 0

- B. 2x 9y 11 = 0
- C. 4x 7y 11 = 0

D. 2x + 9y + 7 = 0

Answer: D

Solution:

Solution: Let P, Q, R, be the vertices of \triangle PQR P(2, 2)Q(6, -1) S R(7, 3)Since PS is the median S is mid-point of QR

S is mid-point of QR So, S = $\left(\frac{7+6}{2}, \frac{3-1}{2}\right) = \left(\frac{13}{2}, 1\right)$ Now, slope of PS = $\frac{2-1}{2-\frac{13}{2}} = -\frac{2}{9}$

Since, required line is parallel to PS therefore slope of required line = slope of PS Now, eqn. of line passing through (1,-1) and having slope $-\frac{2}{9}$ is

 $y - (-1) = -\frac{2}{9}(x - 1)$ 9y + 9 = -2x + 2 \Rightarrow 2x + 9y + 7 = 0

Question126

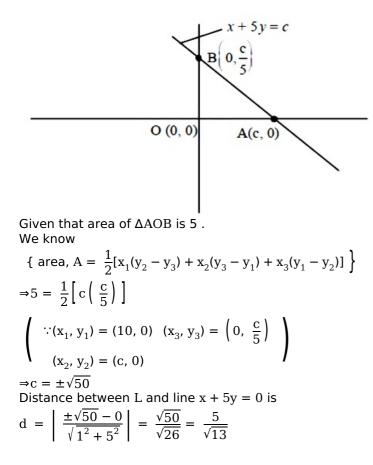
If a line L is perpendicular to the line 5x - y = 1, and the area of the triangle formed by the line L and the coordinate axes is 5, then the distance of line L from the line x + 5y = 0 is: [Online April 19, 2014]

Options:

A. $\frac{7}{\sqrt{5}}$ B. $\frac{5}{\sqrt{13}}$

- C. $\frac{7}{\sqrt{13}}$
- D. $\frac{5}{\sqrt{7}}$

Answer: B



If the three distinct lines x + 2ay + a = 0, x + 3by + b = 0 and x + 4ay + a = 0 are concurrent, then the point (a, b) lies on a: [Online April 12, 2014]

Options:

A. circle

B. hyperbola

C. straight line

D. parabola

Answer: C

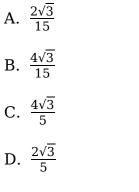
Solution:

```
\begin{array}{l} x+2ay+a=0\ldots(i)\\ x+3by+b=0\ldots(ii)\\ x+4ay+a=0\ldots(iii)\\ \text{Subtracting equation (iii) from (i)}\\ -2ay=0\\ ay=0=y=0\\ \text{Putting value of y in equation (i), we get}\\ x+0+a=0\\ x=-a\\ \text{Putting value of x and y in equation (ii), we get}\\ -a+b=0\Rightarrow a=b\\ \text{Thus, (a, b) lies on a straight line} \end{array}
```

The base of an equilateral triangle is along the line given by 3x + 4y = 9. If a vertex of the triangle is (1,2), then the length of a side of the triangle is: [Online April 11, 2014]

[Online April 11, 2014]

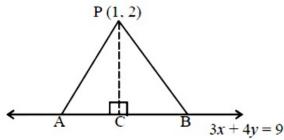
Options:



Answer: B

Solution:

Solution:



Shortest distance of a point (x_1, y_1) from line ax + by = c is $d = \left| \frac{ax_1 + by_1 - c}{\sqrt{a^2 + b^2}} \right|$ Now shortest distance of P(1, 2) from 3x + 4y = 9 is PC = $d = \left| \frac{3(1) + 4(2) - 9}{\sqrt{3^2 + 4^2}} \right| = \frac{2}{5}$ Given that $\triangle APB$ is an equilateral triangle Let ' a ' be its side then PB = a, CB = $\frac{a}{2}$

Now, In $\triangle PCB$, $(PB)^2 = (PC)^2 + (CB)^2$ (By Pythagoras theoresm) $a^2 = \left(\frac{2}{5}\right)^2 + \frac{a^2}{4}$ $a^2 - \frac{a^4}{4} = \frac{4}{25} \Rightarrow \frac{3a^2}{4} = \frac{4}{25}$ $a^2 = \frac{16}{75} \Rightarrow a = \sqrt{\frac{16}{75}} = \frac{4}{5\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{4\sqrt{3}}{15}$ \therefore Length of Equilateral triangle (a) = $\frac{4\sqrt{3}}{15}$

Question129

The x -coordinate of the incentre of the triangle that has the coordinates of mid points of its sides as (0,1)(1,1) and (1,0) is :

[2013]

Options:

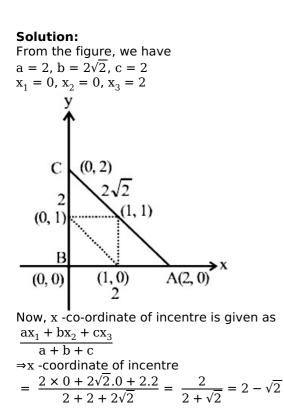
A. $2 + \sqrt{2}$ B. $2 - \sqrt{2}$

C. 1 + $\sqrt{2}$

D. $1 - \sqrt{2}$

Answer: B

Solution:



Question130

A light ray emerging from the point source placed at P(1, 3) is reflected at a point Q in the axis of x. If the reflected ray passes through the point R(6, 7), then the abscissa of Q is: [Online April 9, 2013]

Options:

A. 1

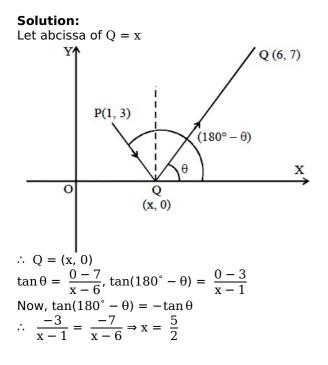
B. 3

C. $\frac{7}{2}$

D. $\frac{5}{2}$

Answer: D

Solution:



Question131

If the three lines x - 3y = p, ax + 2y = q and ax + y = r form a rightangled triangle then : [Online April 9, 2013]

Options:

- A. $a^2 9a + 18 = 0$ B. $a^2 - 6a - 12 = 0$ C. $a^2 - 6a - 18 = 0$
- D. $a^2 9a + 12 = 0$

Answer: A

Solution:

Solution:

Since three lines x - 3y = p, ax + 2y = q and ax + y = rform a right angled triangle \therefore product of slopes of any two lines = -1Suppose ax + 2y = q and x - 3y = p are \perp to each other. $\therefore \frac{-a}{2} \times \frac{1}{3} = -1 \Rightarrow a = 6$ Now, consider option one by one a = 6 satisfies only option (a) \therefore Required answer is $a^2 - 9a + 18 = 0$

A ray of light along $x + \sqrt{3}y = \sqrt{3}$ gets reflected upon reaching x -axis, the equation of the reflected ray is [2013]

Options:

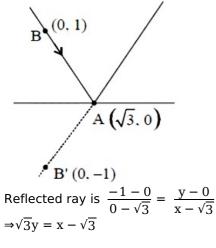
A. $y = x + \sqrt{3}$ B. $\sqrt{3}y = x - \sqrt{3}$ C. $y = \sqrt{3}x - \sqrt{3}$ D. $\sqrt{3}y = x - 1$

Answer: B

Solution:

Solution:

Suppose B(0, 1) be any point on given line and co-ordinate of A is ($\sqrt{3}$, 0). So, equation of



Question133

If the x -intercept of some line L is double as that of the line, 3x + 4y = 12 and the y -intercept of L is half as that of the same line, then the slope of L is : [Online April 22, 2013]

Options:

A. -3

B. $-\frac{3}{8}$

- C. $-\frac{3}{2}$
- D. $-\frac{3}{16}$

Answer: D

Solution:

Solution: Given line 3x + 4y = 12 can be rewritten as $\frac{3x}{12} + \frac{4y}{12} = 1 \Rightarrow \frac{x}{4} + \frac{y}{3} = 1$ $\Rightarrow x$ -intercept = 4 and y-intercept = 3 Let the required line be L: $\frac{x}{a} + \frac{y}{b} = 1$ where a = x-intercept and b = y-intercept According to the question $a = 4 \times 2 = 8$ and b = 3 / 2 \therefore Required line is $\frac{x}{8} + \frac{2y}{3} = 1$ $\Rightarrow 3x + 16y = 24$ $\Rightarrow y = \frac{-3}{16}x + \frac{24}{16}$ Hence, required slope $= \frac{-3}{16}$.

Question134

If the extremities of the base of an isosceles triangle are the points (2a, 0) and (0, a) and the equation of one of the sides is x = 2a, then the area of the triangle, in square units, is: [Online April 23, 2013]

Options:

A. $\frac{5}{4}a^2$

B. $\frac{5}{2}a^2$

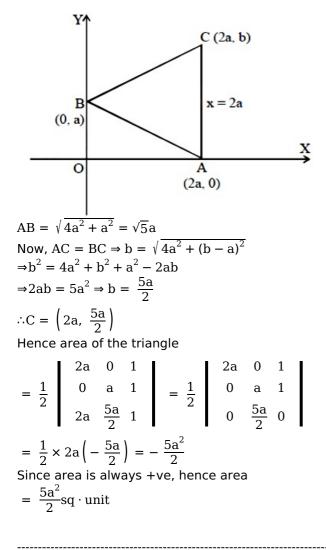
C. $\frac{25a^2}{4}$

D. 5a²

Answer: B

Solution:

Solution: Let y -coordinate of C = b $\therefore C = (2a, b)$



Let θ_1 be the angle between two lines $2x + 3y + c_1 = 0$ and $-x + 5y + c_2 = 0$ and θ_2 be the angle between two lines $2x + 3y + c_1 = 0$ and $-x + 5y + c_3 = 0$, where c_1, c_2, c_3 are any real numbers: Statement-1: If c_2 and c_3 are proportional, then $\theta_1 = \theta_2$. Statement-2: $\theta_1 = \theta_2$ for all c_2 and c_3 [Online April 23, 2013]

Options:

A. Statement- 1 is true, Statement- 2 is true; Statement- 2 is a correct explanation of Statement- 1.

B. Statement- 1 is true, Statement- 2 is true; Statement- 2 is not a correct explanation of Statement- 1 .

C. Statement- 1 is false; Statement- 2 is true.

D. Statement- 1 is true; Statement- 2 is false.

Answer: A

Solution:

Two lines $-x + 5y + c_2 = 0$ and $-x + 5y + c_3 = 0$ are parallel to each other. Hence statement- 1 is true, statement2 is true and statement- 2 is the correct explanation of statement-1.

Question136

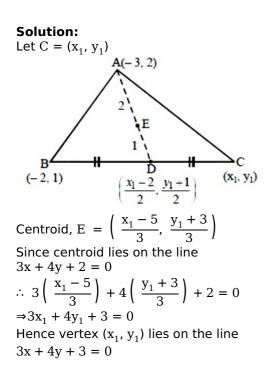
Let A(-3, 2) and B(-2, 1) be the vertices of a triangle ABC. If the centroid of this triangle lies on the line 3x + 4y + 2 = 0, then the vertex C lies on the line : [Online April 25, 2013]

Options:

- A. 4x + 3y + 5 = 0
- B. 3x + 4y + 3 = 0
- C. 4x + 3y + 3 = 0
- D. 3x + 4y + 5 = 0

Answer: B

Solution:



Question137

If the image of point P(2, 3) in a line L is Q(4, 5), then the image of point R(0, 0) in the same line is: [Online April 25, 2013]

Options:

A. (2,2)

- B. (4,5)
- C. (3,4)
- D. (7,7)

Answer: D

Solution:

Solution:

Mid-point of P(2, 3) and Q(4, 5) = (3, 4) Slope of PQ = 1 Slope of the line L = -1Mid-point (3,4) lies on the line L. Equation of line L $y-4 = -1(x-3) \Rightarrow x+y-7 = 0$ Let image of point R(0, 0) be S(x₁, y₁) Mid-point of RS = $\left(\frac{x_1}{2}, \frac{y_1}{2}\right)$ Mid-point $\left(\frac{x_1}{2}, \frac{y_1}{2} \right)$ lies on the line (i) $\therefore \mathbf{x}_1 + \mathbf{y}_1 = 14$ Slope of RS = $\frac{y_1}{x_1}$ Since RS⊥ line L $\therefore \quad \frac{\mathbf{y}_1}{\mathbf{x}_1} \times (-1) = -1$ $\therefore x_1 = y_1$ From (ii) and (iii), $x_1 = y_1 = 7$ Hence the image of R = (7, 7)

Question138

If the line 2x + y = k passes through the point which divides the line segment joining the points (1,1) and (2,4) in the ratio 3 : 2, then k equals : [2012]

Options:

A. $\frac{29}{5}$

B. 5

C. 6

D. $\frac{11}{5}$

Answer: C

Solution:

Solution:

Let the points be A(1, 1) and B(2, 4). Let point C divides line AB in the ratio 3: 2 . So, by section formula we have

 $C = \left(\frac{3 \times 2 + 2 \times 1}{3 + 2}, \frac{3 \times 4 + 2 \times 1}{3 + 2}\right) = \left(\frac{8}{5}, \frac{14}{5}\right)$ Since Line 2x + y = k passes through C $\left(\frac{8}{5}, \frac{14}{5}\right)$ $\Rightarrow \frac{2 \times 8}{5} + \frac{14}{5} = k \Rightarrow k = 6$

Question139

If the straight lines x + 3y = 4, 3x + y = 4 and x + y = 0 form a triangle, then the triangle is [Online May 7, 2012]

Options:

- A. scalene
- B. equilateral triangle
- C. isosceles
- D. right angled isosceles

Answer: C

Solution:

Solution:

Let equation of AB : x + 3y = 4Let equation of BC : 3x + y = 4Let equation of CA : x + y = 0Now, By solving these equations we get A = (-2, 2), B = (1, 1) and C = (2, -2)Now, $AB = \sqrt{9 + 1} = \sqrt{10}$ BC = $\sqrt{1 + 9} = \sqrt{10}$ and CA = $\sqrt{16 + 16} = \sqrt{32}$ Since, length of AB and BC are same therefore triangle is isosceles.

Question140

If two vertical poles 20m and 80m high stand apart on a horizontal plane, then the height (in m) of the point of intersection of the lines joining the top of each pole to the foot of other is [Online May 7, 2012]

Options:

A. 16

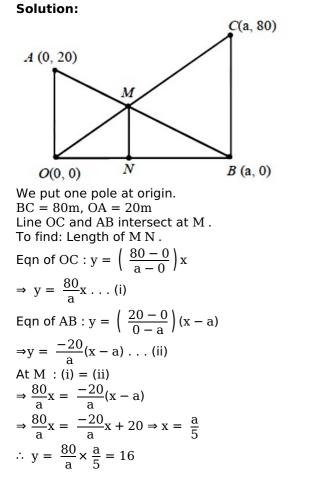
B. 18

C. 50

D. 15

Answer: A

Solution:



Question141

The point of intersection of the lines $(a^3 + 3)x + ay + a - 3 = 0$ and $(a^5 + 2)x + (a + 2)y + 2a + 3 = 0$ (a real) lies on the y-axis for [Online May 7, 2012]

Options:

A. no value of a

B. more than two values of a

- C. exactly one value of a
- D. exactly two values of a

Answer: A

Solution:

Solution:

Given equation of lines are $(a^3 + 3)x + ay + a - 3 = 0$ and $(a^5 + 2)x + (a + 2)y + 2a + 3 = 0$ (a real) Since point of intersection of lines lies on y-axis. \therefore Put x = 0 in each equation, we get ay + a - 3 = 0 and (a + 2)y + 2a + 3 = 0On solving these we get (a + 2)(a - 3) - a(2a + 3) = 0 $\Rightarrow a^{2} - a - 6 - 2a^{2} - 3a = 0$ $\Rightarrow -a^{2} - 4a - 6 = 0 \Rightarrow a^{2} + 4a + 6 = 0$ $\Rightarrow a = \frac{-4 \pm \sqrt{16 - 24}}{2} = \frac{-4 \pm \sqrt{-8}}{2}$ (not real)

This shows that the point of intersection of the lines lies on the y -axis for no value of ' a '.

Question142

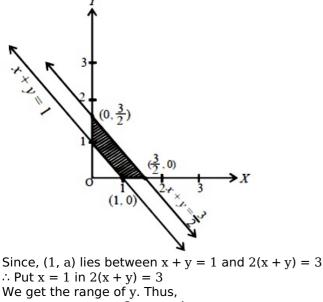
If the point (1, a) lies between the straight lines x + y = 1 and 2(x + y) = 3 then a lies in interval [Online May 12, 2012]

Options:

- A. $\left(\frac{3}{2}, \infty\right)$ B. $\left(1, \frac{3}{2}\right)$
- D. (1, 2)
- C. (−∞, 0)
- D. $(0, \frac{1}{2})$
- Answer: D

Solution:

Solution:



∴ Put x = 1 in 2(x + y) = 3 We get the range of y. Thus, 2(1 + y) = 3 ⇒ y = $\frac{3}{2} - 1 = \frac{1}{2}$ Thus 'a'lies in $\left(0, \frac{1}{2}\right)$

Question143

If two vertices of a triangle are (5,-1) and (-2,3) and its orthocentre is at (0, 0), then the third vertex is [Online May 12, 2012]

Options:

A. (4,-7)

B. (-4,-7)

C. (-4,7)

D. (4,7)

Answer: B

Solution:

Solution:

A(5, -1)H (0, 0)C (a, b) B(-2,3) Let the third vertex of $\triangle ABC$ be (a, b). Orthocentre = H(0, 0)Let A(5, -1) and B(-2, 3) be other two vertices of \triangle ABC. Now, (Slope of AH) × (Slope of BC) = -1 $\frac{-1-0}{5-0}\right)\left(\begin{array}{c} \underline{b-3}\\ \underline{a+2}\end{array}\right) = -1$ $\Rightarrow b - 3 = 5(a + 2) \dots (i)$ Similarly, (Slope of BH) × (Slope of AC) = -1 $\Rightarrow -\left(\frac{3}{2}\right) \times \left(\frac{b+1}{a-5}\right) = -1$ $\Rightarrow 3b + 3 = 2a - 10$ \Rightarrow 3b - 2a + 13 = 0 . . . (ii) On solving equations (i) and (ii) we get a = -4, b = -7Hence, third vertex is (-4,-7)

Question144

Let L be the line y = 2x, in the two dimensional plane.

Statement 1: The image of the point (0,1) in L is the point $\left(\frac{4}{5}, \frac{3}{5}\right)$

Statement 2: The points (0,1) and $\left(\frac{4}{5}, \frac{3}{5}\right)$ lie on opposite sides of the line L and are at equal distance from it. [Online May 19, 2012]

Options:

A. Statement 1 is true, Statement 2 is false.

B. Statement 1 is true, Statement 2 is true, Statement 2 is not a correct explanation for Statement 1 .

C. Statement 1 is true, Statement 2 is true, Statement 2 is a correct explanation for Statement 1

D. Statement 1 is false, Statement 2 is true.

Answer: C

Solution:

Solution:

Statement - 1 Let $P(x_1, y_1)$ be the image of (0,1) with respect to the line 2x - y = 0 then $\frac{x_1}{2} = \frac{y_1 - 1}{-1} = \frac{-4(0) + 2(1)}{5}$ $\Rightarrow x_1 = \frac{4}{5}, y_1 = \frac{3}{5}$ Thus, statement- 1 is true. Also, statement- 2 is true and correct explanation for statement- 1

Question145

The line parallel to x -axis and passing through the point of intersection of lines ax + 2by + 3b = 0 and bx - 2ay - 3a = 0 where (a, b) \neq (0, 0) is [Online May 26, 2012]

Options:

A. above x -axis at a distance 2 / 3 from it

B. above x -axis at a distance 3 / 2 from it

C. below x -axis at a distance 3/2 from it

D. below x -axis at a distance 2/3 from it

Answer: C

Solution:

Solution: Given lines are ax + 2by + 3b = 0 and bx - 2ay - 3a = 0Since, required line is || to x -axis $\therefore x = 0$ We put x = 0 in given equation, we get $2by = -3b \Rightarrow y = -\frac{3}{2}$

This shows that the required line is below x -axis at a distance of $\frac{3}{2}$ from it.

Question146

Consider the straight lines $L_1 : x - y = 1$ $L_2 : x + y = 1$ $L_3 : 2x + 2y = 5$ $L_4 : 2x - 2y = 7$ The correct statement is [Online May 26, 2012]

Options:

A. L₁ | L₄, L₂ | L₃, L₁ intersect L₄

B. L₁⊥L₂, L₁ | L₃, L₁ intersect L₂

C. L₁⊥L₂, L₂ | L₃, L₁ intersect L₄

D. L₁ \perp L₂, L₁ \perp L₃, L₂ intersect L₄

Answer: D

Solution:

Solution:

Consider the lines $L_1 : x - y = 1$ $L_2 : x + y = 1$ $L_3 : 2x + 2y = 5$ $L_4 : 2x - 2y = 7$ $L_1 \bot L_2 \text{ is correct statement}$ (\because Product of their slopes = -1) $L_1 \bot L_3 \text{ is also correct statement}$ (\because Product of their slopes = -1) Now, $L_2 : x + y = 1$ $L_4 : 2x - 2y = 7$ $\Rightarrow 2x - 2(1 - x) = 7$ $\Rightarrow 2x - 2 + 2x = 7$ $\Rightarrow x = \frac{9}{4} \text{ and } y = \frac{-5}{4}$ Hence, L_2 intersects L_4

Question147

If a, b, $c \in R$ and 1 is a root of equation $ax^2 + bx + c = 0$, then the curve $y = 4ax^2 + 3bx + 2c$, $a \neq 0$ intersect x -axis at [Online May 26, 2012]

Options:

A. two distinct points whose coordinates are always rational numbers

B. no point

C. exactly two distinct points

Answer: D

Solution:

Solution: Given $ax^2 + bx + c = 0$ $\Rightarrow ax^2 = -bx - c$ Now, consider $y = 4ax^2 + 3bx + 2c$ = 4[-bx - c] + 3bx + 2c = -4bx - 4c + 3bx + 2c = -bx - 2cSince, this curve intersects x -axis \therefore put y = 0, we get $-bx - 2c = 0 \Rightarrow -bx = 2c$ $\Rightarrow x = \frac{-2c}{b}$ Thus, given curve intersects x -axis at exactly one point.

Question148

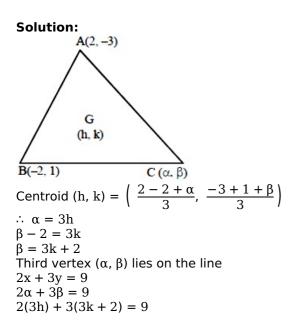
If A(2, -3) and B(-2, 1) are two vertices of a triangle and third vertex moves on the line 2x + 3y = 9, then the locus of the centroid of the triangle is : [2011RS]

Options:

A. x - y = 1

- B. 2x + 3y = 1
- C. 2x + 3y = 3
- D. 2x 3y = 1

Answer: B



2h + 3k = 12x + 3y = 1

Question149

The lines x + y = |a| and ax - y = 1 intersect each other in the first quadrant. Then the set of all possible values of a in the interval: [2011RS]

Options:

A. (0, ∞)

B. [1, ∞)

C. (−1, ∞)

D. (-1,1)

Answer: B

Solution:

Solution: Given that x + y = |a| and ax - y = 1**Case I:** If a > 0x + y = a ... (i) $ax - y = 1 \dots$ (ii) On adding equations (i) and (ii), we get $\mathbf{x}(1+\mathbf{a}) = 1 + \mathbf{a} \Rightarrow \mathbf{x} = 1$ y = a - 1Since given that intersection point lies in first quadrant So, $a - 1 \ge 0$ ⇒a ≥ 1 ⇒a ∈ [1, ∞) **Case II :** If a < 0 $x + y = -a \dots$ (iii) ax - y = 1 ... (iv)On adding equations (iii) and (iv), we get x(1 + a) = 1 - a $x = \frac{1-a}{1+a} > 0 \Rightarrow \frac{a-1}{a+1} < 0$ Since a - 1 < 0∴a + 1 > 0 $\Rightarrow a > -1 \dots (v)$ $\leftarrow \frac{0}{-1} >$ $y = -a - \frac{1-a}{1+a} > 0 = \frac{-a - a^2 - 1 + a}{1+a} > 0$ $\Rightarrow - \left(\; \frac{\mathrm{a}^2 + 1}{\mathrm{a} + 1} \right) > 0 \Rightarrow \; \frac{\mathrm{a}^2 + 1}{\mathrm{a} + 1} < 0$ Since $a^2 + 1 > 0$ ∴a + 1 < 0 ⇒a < -1 . . . (vi) From (v) and (vi), $a \in \varphi$ Hence, Case-II is not possible. So, correct answer is $a \in [1, \infty)$

Question150

The lines $L_1 : y - x = 0$ and $L_2 : 2x + y = 0$ intersect the line $L_3 : y + 2 = 0$ at P and Q respectively. The bisector of the acute angle between L_1 and L_2 intersects L_3 at R.

Statement-1: The ratio PR : RQ equals $2\sqrt{2}$: $\sqrt{5}$ Statement-2: In any triangle, bisector of an angle divides the triangle into two similar triangles. [2011]

Options:

A. Statement- 1 is true, Statement- 2 is true; Statement- 2 is not a correct explanation for Statement- 1.

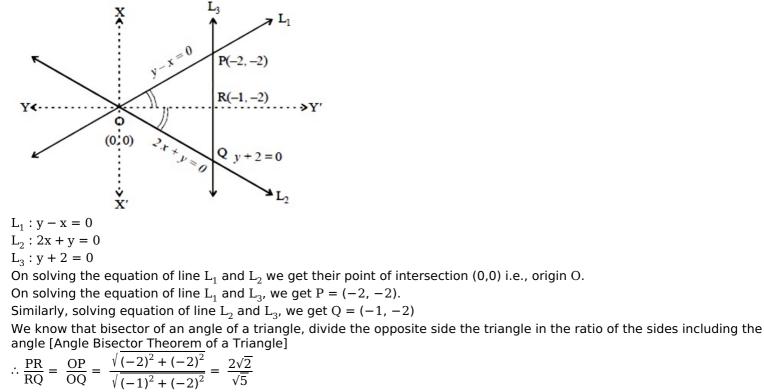
B. Statement- 1 is true, Statement- 2 is false.

C. Statement- 1 is false, Statement- 2 is true.

D. Statement- 1 is true, Statement- 2 is true; Statement- 2 is a correct explanation for Statement-1.

Answer: B

Solution:



∴ Statement 1 is true but $\angle OPR \neq \angle OQR$ So $\triangle OPR$ and $\triangle OQR$ not similar ∴ Statement 2 is false

Question151

The lines $p(p^2 + 1)x - y + q = 0$ and $(p^2 + 1)^2x + (p^2 + 1)y + 2q = 0$ are perpendicular to a common line for :

[2009]

Options:

- A. exactly one values of p
- B. exactly two values of p
- C. more than two values of p
- D. no value of p

Answer: A

Solution:

Solution:

Given that the lines $p(p^2 + 1)x - y + q = 0$ and $(p^2 + 1)^2x + (p^2 + 1)y + 2q = 0$ are perpendicular to a common line then these lines must be parallel to each other,

 $\therefore m_1 = m_2$ $\Rightarrow -\frac{p(p^2+1)}{-1} = -\frac{(p^2+1)^2}{p^2+1}$ $\Rightarrow (p^2+1)^2(p+1) = 0$ $\Rightarrow p = -1$ \therefore p can have exactly one value.

Question152

The shortest distance between the line y - x = 1 and the curve $x = y^2$ is : [2009]

Options:

B. $\frac{3\sqrt{2}}{5}$

- C. $\frac{\sqrt{3}}{4}$
- D. $\frac{3\sqrt{2}}{8}$

Answer: D

Solution:

Solution:

Let (a^2, a) be the point of shortest distance on $x = y^2$ Then distance between (a^2, a) and line x - y + 1 = 0 is given by $D = \left| \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right| = \frac{|a^2 - a + 1|}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left| \left(a - \frac{1}{2}\right)^2 + \frac{3}{4} \right|$ It is min when a = $\frac{1}{2}$ and $D_{min} = \frac{3}{4\sqrt{2}} = \frac{3\sqrt{2}}{8}$

The perpendicular bisector of the line segment joining P(1, 4) and Q(k, 3) has y-intercept -4. Then a possible value of k is [2008]

Options:

A. 1

B. 2

C. -2

D. -4

Answer: D

Solution:

Solution: Slope of PQ = $\frac{3-4}{k-1} = \frac{-1}{k-1}$ \therefore Slope of perpendicular bisector of PQ = (k-1)Also, mid point of PQ $\left(\frac{k+1}{2}, \frac{7}{2}\right)$. \therefore Equation of perpendicular bisector of PQ is $y - \frac{7}{2} = (k-1)\left(x - \frac{k+1}{2}\right)$ $\Rightarrow 2y - 7 = 2(k-1)x - (k^2 - 1)$ $\Rightarrow 2(k-1)x - 2y + (8 - k^2) = 0$ Given that y-intercept $= \frac{8-k^2}{2} = -4$ $\Rightarrow 8 - k^2 = -8$ or $k^2 = 16 \Rightarrow k = \pm 4$

Question154

Let A(h, k), B(1, 1) and C(2, 1) be the vertices of a right angled triangle with AC as its hypotenuse. If the area of the triangle is lsquare unit, then the set of values which 'k' can take is given by [2007]

Options:

A. {-1, 3}

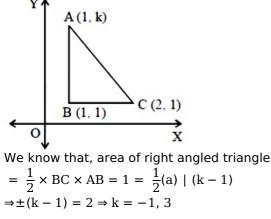
B. {−3, −2}

C. {1, 3}

D. {0, 2}

Answer: A

Solution: Given :A(1, k), B(1, 1) and C(2, 1) are vertices of a right angled triangle and area of $\triangle ABC = 1$ square unit



Question155

Let P = (-1, 0), Q = (0, 0) and R = (3, $3\sqrt{3}$) be three point. The equation of the bisector of the angle PQR is [2007]

Options:

- A. $\frac{\sqrt{3}}{2}x + y = 0$
- B. $x + \sqrt{3y} = 0$

C. $\sqrt{3}x + y = 0$

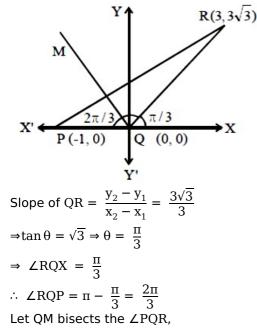
D. x +
$$\frac{\sqrt{3}}{2}y = 0$$

Answer: C

Solution:

Solution:

Given : The coordinates of points P, Q, R are (-1, 0), (0, 0), $(3, 3\sqrt{3})$ respectively.



 $\therefore \ \ \angle M \ QR = \frac{\pi}{3} \Rightarrow \ \ \angle M \ QX = \frac{2\pi}{3}$ $\therefore \ \ Slope of the line QM = \tan \frac{2\pi}{3} = -\sqrt{3}$ $\therefore \ \ Equation of line QM is (y - 0) = -\sqrt{3}(x - 0)$ $\Rightarrow y = -\sqrt{3}x \Rightarrow \sqrt{3}x + y = 0$

Question156

If one of the lines of $my^2 + (1 - m^2)xy - mx^2 = 0$ is a bisector of the angle between the lines xy = 0, then m is [2007]

Options:

A. 1

B. 2

C. $-\frac{1}{2}$

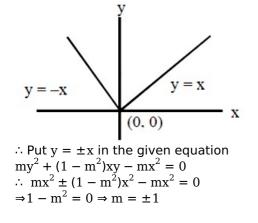
D. -2

Answer: A

Solution:

Solution:

From figure equation of bisectors of lines, xy = 0 are $y = \pm x$



Question157

If (a, a^2) falls inside the angle made by the lines $y = \frac{x}{2}$, x > 0 and y = 3x, x > 0, then a belong to [2006]

Options:

A. $(0, \frac{1}{2})$

B. (3, ∞)

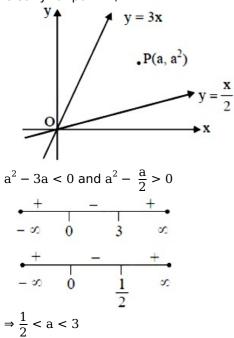
C.
$$\left(\frac{1}{2}, 3\right)$$

D. $\left(-3, -\frac{1}{2}\right)$

Answer: C

Solution:

Solution: Clearly for point P,



Question158

A straight line through the point A(3, 4) is such that its intercept between the axes is bisected at A. Its equation is [2006]

Options:

A. x + y = 7

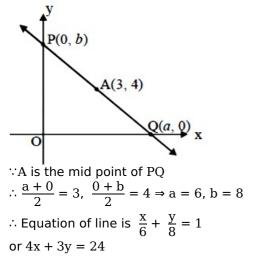
B. 3x - 4y + 7 = 0

C. 4x + 3y = 24

D. 3x + 4y = 25

Answer: C

Solution:



Question159

If a vertex of a triangle is (1,1) and the mid points of two sides through this vertex are (-1,2) and (3,2) then the centroid of the triangle is [2005]

Options:

- A. $\left(-1, \frac{7}{3}\right)$
- B. $\left(\frac{-1}{3}, \frac{7}{3}\right)$
- C. $(1, \frac{7}{3})$
- D. $\left(\frac{1}{3}, \frac{7}{3}\right)$

Answer: C

Solution:

Solution:

Vertex of triangle is (1,1) and midpoint of sides through this vertex is (-1,2) and (3,2) Co-ordinate of B is (x, y)co-ordinates of B is $\left(\frac{1+x}{2} = -1, \frac{1+y}{2} = 1\right)$: ((x, y) : (-3, 3)) Similarly, co-ordinate of C comesout to be (5,3) Thus centroid is, $\frac{1-3+5}{3}$, $\frac{1+3+3}{3} \Rightarrow \left(1, \frac{7}{3}\right)$... (hint: using formula of centroid)

Question160

The line parallel to the x -axis and passing through the intersection of the lines ax + 2by + 3b = 0 and bx - 2ay - 3a = 0, where (a, b) \neq (0, 0) is [2005]

Options:

A. below the x - axis at a distance of $\frac{3}{2}$ from it

B. below the x - axis at a distance of $\frac{2}{3}$ from it

C. above the x - axis at a distance of $\frac{3}{2}$ from it

D. above the x - axis at a distance of $\frac{2}{3}$ from it

Answer: A

Solution:

Solution: The eqn. of line passing through the intersection of lines ax + 2by + 3b = 0 and bx - 2ay - 3a = 0 is $ax + 2by + 3b + \lambda(bx - 2ay - 3a) = 0$ $\Rightarrow (a + b\lambda)x + (2b - 2a\lambda)y + 3b - 3\lambda a = 0$ Required line is parallel to x -axis. $\therefore a + b\lambda = 0 \Rightarrow \lambda = -a / b$ $\Rightarrow ax + 2by + 3b - \frac{a}{b}(bx - 2ay - 3a) = 0$ $\Rightarrow ax + 2by + 3b - ax + \frac{2a^2}{b}y + \frac{3a^2}{b} = 0$ $y\left(2b + \frac{2a^2}{b}\right) + 3b + \frac{3a^2}{b} = 0$ $y\left(\frac{2b^2 + 2a^2}{b}\right) = -\left(\frac{3b^2 + 3a^2}{b}\right)$ $y = \frac{-3(a^2 + b^2)}{2(b^2 + a^2)} = \frac{-3}{2}$ So it is 3 / 2 units below x -axis.

Question161

The equation of the straight line passing through the point (4,3) and making intercepts on the co-ordinate axes whose sum is -1 is [2004]

Options:

A.
$$\frac{x}{2} - \frac{y}{3} = 1$$
 and $\frac{x}{-2} + \frac{y}{1} = 1$
B. $\frac{x}{2} - \frac{y}{3} = -1$ and $\frac{x}{-2} + \frac{y}{1} = -1$
C. $\frac{x}{2} + \frac{y}{3} = 1$ and $\frac{x}{2} + \frac{y}{1} = 1$
D. $\frac{x}{2} + \frac{y}{3} = -1$ and $\frac{x}{-2} + \frac{y}{1} = -1$

Answer: A

Let the required line be $\frac{x}{a} + \frac{y}{b} = 1$ (i) then $a + b = -1 \Rightarrow b = -a - 1$ (ii) (i) passes through (4, 3), $\Rightarrow \frac{4}{a} + \frac{3}{b} = 1$ $\Rightarrow 4b + 3a = ab$ (iii) Putting value of b from (ii) in (iii), we get $a^2 - 4 = 0 \Rightarrow a = \pm 2 \Rightarrow b = -3$ or $1 \therefore$ Equations of straight lines are $\frac{x}{2} + \frac{y}{-3} = 1$ or $\frac{x}{-2} + \frac{y}{1} = 1$

Question162

Let A(2, -3) and B(-2, 3) be vertices of a triangle ABC. If the centroid of this triangle moves on the line 2x + 3y = 1, then the locus of the vertex C is the line [2004]

Options:

- A. 3x 2y = 3
- B. 2x 3y = 7
- C. 3x + 2y = 5
- D. 2x + 3y = 9
- Answer: D

Solution:

Solution: Let the vertex C be (h, k), then the centroid of $\triangle ABC$ is $\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$ $= \left(\frac{2 - 2 + h}{3}, \frac{-3 + 1 + k}{3}\right)$ $= \left(\frac{h}{3}, \frac{-2 + k}{3}\right) \cdot \text{It lies on } 2x + 3y = 1$ $\Rightarrow \frac{2h}{3} - 2 + k = 1 \Rightarrow 2h + 3k = 9$ $\Rightarrow \text{ Locus of C is } 2x + 3y = 9$

Question163

If one of the lines given by $6x^2 - xy + 4cy^2 = 0$ is 3x + 4y = 0, then c equals [2004]

Options:

A. -3

B. 1

C. 3

D. 1

Answer: A

Solution:

Solution:

3x + 4y = 0 is one of the line of the pair equations. of lines $6x^2 - xy + 4cy^2 = 0, \quad \text{Put } y = -\frac{3}{4}x$ $\text{we get, } 6x^2 + \frac{3}{4}x^2 + 4c\left(-\frac{3}{4}x\right)^2 = 0$ $\Rightarrow 6 + \frac{3}{4} + \frac{9c}{4} = 0 \Rightarrow c = -3$

Question164

If the sum of the slopes of the lines given by $x^2 - 2cxy - 7y^2 = 0$ is four times their product c has the value [2004]

Options:

A. -2

B. -1

C. 2

D. 1

Answer: C

Solution:

Solution: Let the lines be $y = m_1 x$ and $y = m_2 x$ then $m_1 + m_2 = -\frac{2c}{7}$ and $m_1 m_2 = -\frac{1}{7}$ Given that $m_1 + m_2 = 4m_1 m_2$ $\Rightarrow -\frac{2c}{7} = -\frac{4}{7} \Rightarrow c = 2$

Question165

If the equation of the locus of a point equidistant from the point (a_1, b_1) and (a_2, b_2) is $(a_1 - b_2)x + (a_1 - b_2)y + c = 0$, then the value of c is [2003]

Options:

A. $\sqrt{a_1^2 + b_1^2 - a_2^2 - b_2^2}$ B. $\frac{1}{2}a_2^2 + b_2^2 - a_1^2 - b_1^2$ C. $a_1^2 - a_2^2 + b_1^2 - b_2^2$ D. $\frac{1}{2}(a_1^2 + a_2^2 + b_1^2 + b_2^2)$

Answer: B

Solution:

Solution: $(x - a_1)^2 + (y - b_1)^2 = (x - a_2)^2 + (y - b_2)^2$ $(a_1 - a_2)x + (b_1 - b_2)y + \frac{1}{2}(a_2^2 + b_2^2 - a_1^2 - b_1^2) = 0$ Comparing with given eqn. we get $c = \frac{1}{2}(a_2^2 + b_2^2 - a_1^2 - b_1^2)$

Question166

Locus of centroid of the triangle whose vertices are $(a \cos t, a \sin t)$, $(b \sin t, -b \cos t)$ and (1, 0), where t is a parameter, is [2003]

Options:

A.
$$(3x + 1)^2 + (3y)^2 = a^2 - b^2$$

B. $(3x - 1)^2 + (3y)^2 = a^2 - b^2$
C. $(3x - 1)^2 + (3y)^2 = a^2 + b^2$
D. $(3x + 1)^2 + (3y)^2 = a^2 + b^2$

Answer: C

Solution:

Solution: We know that centroid $(x, y) = \left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$ $x = \frac{a \cos t + b \sin t + 1}{3}$ $\Rightarrow a \cos t + b \sin t = 3x - 1$ $y = \frac{a \sin t - b \cos t}{3}$ $\Rightarrow a \sin t - b \cos t = 3y$ Squaring and adding, $(3x - 1)^2 + (3y)^2 = a^2 + b^2$

If x_1 , x_2 , x_3 and y_1 , y_2 , y_3 are both in G.P. with the same common ratio, then the points (x_1, y_1) , (x_2, y_2) and (x_3, y_3) [2003]

Options:

A. are vertices of a triangle

- B. lie on a straight line
- C. lie on an ellipse
- D. lie on a circle.

Answer: B

Solution:

Solution: Taking co-ordinates as $A\left(\frac{x}{r}, \frac{y}{r}\right)$; B(x, y) and C(xr, yr) Then slope of line joining $A\left(\frac{x}{r}, \frac{y}{r}\right)$, B(x, y) = $\frac{y\left(1 - \frac{1}{r}\right)}{x\left(1 - \frac{1}{r}\right)} = \frac{y}{x}$ and slope of line joining B(x, y) and C(xr, yr) $= \frac{y(r-1)}{x(r-1)} = \frac{y}{x}$ $\therefore m_1 = m_2$ \therefore Slope of AB and BC are same and one point B common. \Rightarrow Points lie on the straight line.

Question168

A square of side a lies above the x -axis and has one vertex at the origin. The side passing through the origin makes an angle $\alpha \left(0 < \alpha < \frac{\pi}{4} \right)$ with the positive direction of x -axis. The equation of its diagonal not passing through the origin is [2003]

Options:

A. $y(\cos \alpha + \sin \alpha) + x(\cos \alpha - \sin \alpha) = a$

B. $y(\cos \alpha - \sin \alpha) - x(\sin \alpha - \cos \alpha) = a$

C. $y(\cos \alpha + \sin \alpha) + x(\sin \alpha - \cos \alpha) = a$

D. $y(\cos \alpha + \sin \alpha) + x(\sin \alpha + \cos \alpha) = a$

Answer: A

Solution:

Solution:

Co-ordinates of A = $(a \cos \alpha, a \sin \alpha)$ Equation of OB, $y = \tan\left(\frac{\pi}{4} + \alpha\right) x$ CAL^r to OB \therefore Slope of CA = $-\cot\left(\frac{\pi}{4} + \alpha\right)$ Equation of CA $y - a \sin \alpha = -\cot\left(\frac{\pi}{4} + \alpha\right)(x - a \cos \alpha)$ $\Rightarrow (y - a \sin \alpha)\left(\tan\left(\frac{\pi}{4} + \alpha\right)\right) = (a \cos \alpha - x)$ $\Rightarrow (y - a \sin \alpha)\left(\frac{\tan\frac{\pi}{4} + \tan \alpha}{1 - \tan\frac{\pi}{4}\tan\alpha}\right) = (a \cos \alpha - x)$ $\Rightarrow (y - a \sin \alpha)(1 + \tan \alpha) = (a \cos \alpha - x)(1 - \tan \alpha)$ $\Rightarrow (y - a \sin \alpha)(\cos \alpha + \sin \alpha)$ $= (a \cos \alpha - x)(\cos \alpha - \sin \alpha)$ $\Rightarrow y(\cos + \sin \alpha) - a \sin \alpha \cos \alpha - a \sin^2 \alpha$ $= a \cos^2 \alpha - a \cos \alpha \sin \alpha - x(\cos \alpha - \sin \alpha)$ $\Rightarrow y(\cos \alpha + \sin \alpha) + x(\cos \alpha - \sin \alpha) = a$

 $\Rightarrow y(\cos \alpha + \sin \alpha) + x(\cos \alpha - \sin \alpha) = a$ $y(\sin \alpha + \cos \alpha) + x(\cos \alpha - \sin \alpha) = a$

Question169

If the pair of straight lines $x^2 - 2pxy - y^2 = 0$ and $x^2 - 2qxy - y^2 = 0$ be such that each pair bisects the angle between the other pair, then [2003]

Options:

A. pq = -1

B. p = q

C. p = -q

D. pq = 1.

Answer: A

Solution:

Solution:

Equation of bisectors of second pair of straight lines is, $qx^2 + 2xy - qy^2 = 0 \dots$ (i) It must be identical to the first pair $\dots x^2 - 2pxy - y^2 = 0 \dots$ (ii) from (i) and (ii)

A triangle with vertices (4,0),(-1,-1),(3,5) is [2002]

Options:

- A. isosceles and right angled
- B. isosceles but not right angled
- C. right angled but not isosceles
- D. neither right angled nor isosceles

Answer: A

Solution:

Solution: $AB = \sqrt{(4 + 1)^2 + (0 + 1)^2} = \sqrt{26}$ $BC = \sqrt{(3 + 1)^2 + (5 + 1)^2} = \sqrt{52}$ $CA = \sqrt{(4 - 3)^2 + (0 - 5)^2} = \sqrt{26}$ $\therefore AB = CA$ \therefore Isosceles triangle $\because (\sqrt{26})^2 + (\sqrt{26})^2 = 52$ $BC^2 = AB^2 + AC^2$ \therefore right angled triangle, So, the given triangle is isosceles right angled.

Question171

Locus of mid point of the portion between the axes of $x \cos \alpha + y \sin \alpha = p$ where p is constant is [2002]

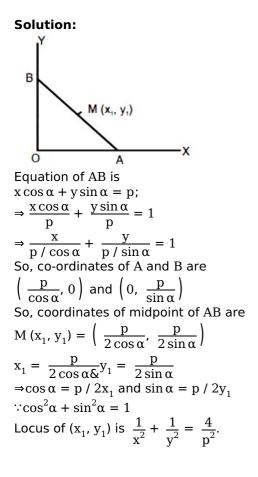
Options:

A. $x^{2} + y^{2} = \frac{4}{p^{2}}$ B. $x^{2} + y^{2} = 4p^{2}$

C.
$$\frac{1}{x^2} + \frac{1}{y^2} = \frac{2}{p^2}$$

D.
$$\frac{1}{x^2} + \frac{1}{y^2} = \frac{4}{p^2}$$

Answer: D



The pair of lines represented by $3ax^2 + 5xy + (a^2 - 2)y^2 = 0$ are perpendicular to each other for [2002]

Options:

A. two values of a

B. ∀a

C. for one value of a

D. for no values of a

Answer: A

Solution:

Solution: We know that pair of straighty lines $ax^2 + 2hxy + by^2 = 0$ are perpendicular when a + b = 0 $3a + a^2 - 2 = 0 \Rightarrow a^2 + 3a - 2 = 0$ $\Rightarrow a = \frac{-3 \pm \sqrt{9 + 8}}{2} = \frac{-3 \pm \sqrt{17}}{2}$

Question173

If the pair of lines $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ intersect on the y -axis then [2002]

Options:

- A. $2fgh = bg^2 + ch^2$
- B. $bg^2 \neq ch^2$
- C. abc = 2fgh
- D. none of these

Answer: A

Solution:

Solution:

Put x = 0 in the given equation \Rightarrow by² + 2f y + c = 0 For unique point of intersection, f² - bc = 0 \Rightarrow af² - abc = 0 We know that for pair of straight line abc + 2f gh - af² - bg² - ch² = 0 \Rightarrow 2f gh - bg² - ch² = 0
